Vehicular Ad hoc Networks (VANETs) are considered to be a novel solution for provisioning of infotainment services and reduction of accidents on the road. However, communication in VANETs is significantly hampered by multipath fading and co-channel interference. In this context, we analytically model VANETs based on the well-known cluster model. The closed form expression for packet error probability is derived in the presence of co-channel interference under α-μ fading. Impact of α and μ on interference is also characterized in detail. We also incorporate the impact of channel estimation errors of main and interfering link to provide more realistic evaluation of packet error probability. We then provide performance evaluation of VANETs under cooperative communication and quantify the improvements in the performance of cluster. We also evaluate the importance of fading parameters α and μ in the presence of interfering signal from nearby cluster. Our findings disclose that an error floor is introduced at high signal-to-noise-ratio (SNR) due to imperfect channel estimation. Additionally, the error probability considerably reduces by applying cooperative scheduling. Extensive simulations are performed in MATLAB to validate our results, which also prove the practicality of our analytical model.
Read full abstract