The use of Fischer-Tropsch (F-T) diesel synthesized from coal in automobiles can alleviate the shortage of petroleum and promote clean utilization of coal. In this study, the effects of injection timing (IT) and rail pressure (RP) on the brake thermal efficiency (BTE), combustion characteristics, and cyclic variations of F-T diesel were investigated on a turbocharged, 6-cylinder, common rail direct injection (CRDI) diesel engine. The results indicate that increasing RP results in higher BTE, whereas advancing IT results in an initial BTE increase and a subsequent BTE decrease. In comparison with petroleum diesel, the BTE of F-T diesel increased by 0.54% on average and by a maximum of 1% under different conditions. When the IT was advanced from 2 °CA to 18 °CA BTDC, the ignition delay periods (IDP) first decreased and then increased, whereas the combustion durations (CD) first lengthened and then shortened; peak cylinder pressure (PCP), peak pressure rise rate (PPRR), and peak combustion temperature (PCT) gradually increased; peak heat release rate (PHRR) first decreased and then increased at the low loads, whereas it always increased at medium and high loads. In comparison with petroleum diesel, the IDP of F-T diesel decreased by 22–31% at various conditions, and the CD was slightly longer than that of petroleum diesel at most conditions. Additionally, increasing RP resulted in a decrease in the IDP and CD, and a significant increase in PCP, PPRR, PHRR, and PCT. At low loads, the PPRR and PHRR of F-T diesel were 32.72% and 32.13% lower than that of diesel owing to the shorter ignition delay. This implies that using F-T diesel can help in attaining smoother engine running and has lower combustion noise. Advancing the injection timing or increasing the engine loads can decrease the cyclic variations, whereas increasing rail pressure results in the increment of COVpmax at low loads and the significant decrement of COVpmax at medium and high loads. In comparison with petroleum diesel, F-T diesel exhibits higher combustion stability owing to the better volatility and higher fuel reactivity.
Read full abstract