Sulfonated sucrose-derived carbon, glucose-derived carbon, and nut shell activated carbon (NSAC) catalysts were prepared and characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS spectra showed that −SO3H groups could be introduced into the carbon precursors after the sulfonation treatment. Higher concentration of −SO3H groups in the sulfonated sucrose-carbon and glucose-carbon most likely accounts for their higher activities compared to sulfonated NSAC. Hydrolysis of microcrystalline cellulose was examined in a common ionic liquid, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), with the sulfonated carbon catalysts. Maximum yields of glucose (59%) and total products (80%, defined as the sum of glucose, cellobiose, and 5-hydroxymethylfurfural) could be obtained with sulfonated sucrose-carbon at 120 °C for 4 h. With a regeneration procedure, the catalyst could be reused.
Read full abstract