Open-pit mining remains the dominant method for copper extraction in current operations, with blasting playing a pivotal role in the efficiency of downstream processes such as loading, hauling, crushing, and milling. This study assesses the impact of surface blast design parameters on the performance of a comminution circuit processing a copper-bearing ore. The analysis focuses on important design parameters such as burden, spacing, stemming, and powder factor, evaluating their influence on the fragment size distribution and downstream comminution circuit performance. Using the Kuz-Ram model, four novel blast designs are compared against a baseline to predict the size distribution of rock fragments (X80). Key performance indicators throughput and specific energy consumption are calculated to evaluate the comminution circuit performance. Results demonstrated that reducing the X80 from 500 mm to 120 mm led up to a 20% increase in throughput and a 29% reduction in total specific energy consumption. Furthermore, achieving finer particle sizes through more intensive blasting contributed to a reduction in total operating costs by up to 12%. These findings provide valuable insights for optimizing blast design to improve comminution circuit performance, contributing to sustainable mining practices by reducing energy consumption, operating costs, and the environmental footprint of mining operations.
Read full abstract