The red alga Asparagopsis taxiformis has recently been recognized for its unique ability to significantly reduce methane emissions from ruminant animals when fed in small quantities. The main obstacle in using this seaweed as a methane-mitigating feed supplement is the lack of commercially available biomass. Little is known about how best to grow this red alga on a commercial scale, as there are few published studies that have investigated the factors that influence growth, physiology, and overall performance. This study examined the effects of temperature and CO2 enrichment on the growth, photophysiology, and concentration of bromoform, the secondary metabolite largely responsible for methane reduction in A. taxiformis. A series of single and multifactor closed culture experiments were conducted on A. taxiformis collected, isolated, and cultured from populations in Southern California. We identified the optimal temperature range to be between 22 and 26°C, with significant short-term stress observed below 15°C and above 26°C. Carbon dioxide addition resulted in increased performance, when accounting for growth per CO2 use. In general, we observed the highest bromoform concentrations in algae with the highest growth rates, but these results varied among experiments. These findings indicate that through environmental control and by addressing limiting resources, significant increases in biomass production and quality can be achieved.
Read full abstract