The integration of multiple functions within a single fluorescent molecule provides a promising platform for developing versatile, efficient, and cost-effective materials with enhanced performance across diverse applications. In this study, we introduce TPEC, an aggregation-induced emission (AIE) molecule derived from tetraphenylethylene-based tetracarboxylate, which demonstrates multifunctional capabilities, including metal ion sensing and self-erasable writing. TPEC exhibits amphiphilicity in water, self-assembling into single-layer nanosheets with robust blue fluorescence. Notably, the aqueous solution of TPEC displays a fluorescence colorimetric response to Al3+ ions and fluorescence quenching in the presence of Fe³⁺ ions. Additionally, TPEC powders undergo fluorescence colorimetric changes under mechanical stimulation, enabling self-erasable writing on prepared paper. This study presents a straightforward strategy for the development of multifunctional luminescent materials based on the self-assembly of a single-component fluorophore.
Read full abstract