There is limited evidence linking exposure to ambient particulate matter (PM) with internal doses of metals and metalloids (metal(loid)s). This study aimed to evaluate the effects of short-term exposure to ambient PM on urine metal(loid)s among Chinese older adults. Biological monitoring data of 15 urine metal(loid)s collected in 3, 970 community-dwelling older adults in Fuyang city, Anhui Province, China, from July to September 2018, were utilized. PMs with an aerodynamic diameter ≤ 1 µm (PM1), ≤ 2.5 µm (PM2.5), and ≤ 10 µm (PM10) up to eight days before urine collection were estimated by space–time extremely randomized trees (STET) model. Residential greenness was reflected by Normalized Difference Vegetation Index (NDVI). We used generalized additive model (GAM) combined with distributed lag linear/non-linear models (DLMs/DLNMs) to estimate the associations between short-term PM exposure and urine metal(loid)s. The results suggested that the cumulative exposures to PM1, PM2.5, or PM10 over two days (lag0-1 days) before urine collection were associated with elevated urine metal(loid)s in DLMs, while exhibited linear or “inverted U-shaped” relationships with seven urine metal(loid)s in DLNMs, including Gallium (Ga), Arsenic (As), Aluminum (Al), Magnesium (Mg), Calcium (Ca), Uranium (U), and Barium (Ba). Aforementioned results indicated robust rather than spurious associations between PMs and these seven metal(loid)s. After standardizations for three PMs, PM1 was the greatest contributor to U, PM2.5 made the greatest contributions to Ga, As, Al, and Ba, and PM10 contributed the most to Mg and Ca. Furthermore, the effects of three PMs on urine Ga, As, Al, Mg, Ca, and Ba were reduced when exposed to higher levels of NDVI. Overall, short-term exposures to ambient PMs contribute to elevated urinary metal(loid) levels in older adults, and three PMs exhibit various contributions to different urine metal(loid)s. Moreover, residential greenness may attenuate the effects of PMs on urine metal(loid)s.
Read full abstract