Purpose: In this work, coir fibre with varying fibre content was selected as reinforcements to prepare polymer-based matrices and the problem of reduced fibre-matrix interfacial bond strength has been diluted by chemical treatment of coir fibres with alkali solution. Design/methodology/approach: The effect of fibre loading, solution concentration and soaking time on the impact strength of the composites were analyzed using statistical techniques. Response Surface Methodology (RSM) approach was used to model and optimize the impact properties of coir-polyester composites. Findings: The impact strength of coir fibre reinforced polyester composite depends mainly on the fabrication parameters such as fibre-polyester content, soaking time, concentration of soaking agent and adhesive interaction between the fibre and reinforcement. Research limitations/implications: The mechanical properties of any coir polyester composite depend on the nature bonding between the fibre and reinforcement. The presence of cellulose, lignin on the periphery of any natural fibre reduces the bonding strength of the composite. This limitation is overcome by fibre treatment over sodium hydroxide to have better impact properties. Practical implications: Now days, natural fibre reinforced composites are capable of replacing automotive parts, subjected to static loads such as engine Guard, light doom, name plate, tool box and front panels etc. These materials can withstand any static load due to its higher strength to weight ratios. Originality/value: The effect of fibre loading, solution concentration and soaking time on the impact strength of the composites were analyzed using statistical techniques. Response Surface Methodology (RSM) approach was used to model and optimize the impact properties of coir-polyester composites. The impact strength of NaOH impregnated coir fibre reinforced polyester composites was evaluated.
Read full abstract