What time does a clock tell after quantum tunneling? Predictions and indirect measurements range from superluminal or instantaneous tunneling to finite durations, depending on the specific experiment and the precise definition of the elapsed time. Proposals and implementations use the atomic motion to define this delay, although the inherent quantum nature of atoms implies a delocalization and is in sharp contrast to classical trajectories. Here, we rely on an operational approach: We prepare atoms in a coherent superposition of internal states and study the time read-off via a Ramsey sequence after the tunneling process without the notion of classical trajectories or velocities. Our operational framework (i) unifies definitions of tunneling delay within one approach, (ii) connects the time to a frequency standard given by a conventional atomic clock that can be boosted by differential light shifts, and (iii) highlights that there exists no superluminal or instantaneous tunneling.
Read full abstract