Second harmonic generation (SHG) has developed into a powerful tool for characterizing oriented thin films, surfaces, and interfaces. Furthermore, the nonlinear optical nature of wave-mixing processes typically results in the generation of a coherent signal beam with a well-defined polarization state. This coherence offers unique opportunities for the extraction of detailed molecular and surface properties from polarization analysis. In previous studies, nonlinear optical ellipsometry (NOE) has been developed as a means to retain sign and phase information between the different nonzero χ(2) tensor elements present in a given sample. However, those previous methods and related approaches for polarization analysis have all relied on the physical movement of optical elements to perform the analysis. The time required to physically move the appropriate optical elements ultimately dictates the fastest analysis time possible in a given technique. Such long acquisition times have limited NOE analyses to systems exhibiting excellent photostability and have precluded the feasibility of NOE imaging. Development of nonlinear optical Stokes ellipsometry (NOSE) was shown to address many of these problems. By increasing the repetition rate of the laser system and replacing previously slow rotating polarization optics with a rapid photoelastic modulator, the acquisition time with full polarization analysis was reduced from several hours to less than a second. This technique was validated against established NOE techniques using z-cut quartz as a reference sample and then demonstrated on a dye thin film. Additionally, an orientation analysis of the thin film was performed. These studies resulted in an order of magnitude improvement in precision relative to previous NOE techniques, while simultaneously accompanied by a reduction in acquisition time of more than four orders of magnitude.
Read full abstract