Synthesis and phase separation of (Ti,Zr)C were investigated in the present work. The (Ti,Zr)C phase was synthesized at 2200°C and subsequently aged at 1300°C for different times. The microstructure was investigated using X-ray diffraction and electron microscopy, and supplemented by first-principles calculations. The (Ti,Zr)C phase separates into a lamellar nanostructure with alternating Ti- and Zr-rich face-centered cubic domains as well as non-stoichiometric TiC and ZrC. The lamellar structure is a consequence of phase separation within the miscibility gap that is directionally constrained by high coherency stresses, as indicated by the first-principles calculations. Moreover, the increased hardness due to the phase separation suggests that the mixed carbide could be used as a strengthening constituent in, for example, cemented carbides.
Read full abstract