The purpose of this study was to quantify the effects of concurrent physical and mental demands on the upper extremity muscle activity during static exertions. Seventeen healthy participants performed isometric upper extremity exertions at five levels of physical intensity (5%, 25%, 45%, 65%, and 85% maximum voluntary contraction (MVC)) in the presence and absence of a mental task (Stroop color word test). Muscular responses were quantified using surface electromyography (EMG) and motor performance was measured through force fluctuations. Subjective assessments were obtained through the NASA-TLX tool and the Borg CR-10 Scale. In general, a decrease in mean anterior and posterior deltoid muscle activity and co-contraction index (CCI) of the shoulder was observed in the presence of the mental task. However, these changes were more prominent at higher physical exertion levels compared to the lower levels. Furthermore, the additional mental task resulted in decreased upper and lower arm muscle activity, specifically at the 45% MVC level. Motor performance improved at the middle exertion levels, but was adversely affected by the mental task at higher exertion levels. Decreased motor performance at higher loads may have been a result of decreased muscular effort to maintain the loads in a steady posture. Both mental and physical demand adversely affected the NASA-TLX ratings, however, ratings using the Borg CR-10 Scale were only sensitive to changes in physical demand. Relevance to industry Workplace tasks, such as jobs performed by healthcare workers, assembly line workers, and computer operators, have become more multidimensional in the recent years; with workers experiencing combined physical and mental demands in their daily jobs, yet their effect on muscular responses is not clearly understood. Results from this study suggest that certain physical exertion levels are more susceptible to interference by mental demands than others.
Read full abstract