The National Center for Atmospheric Research (NCAR) regional climate model (RegCM2), together with initial conditions and time-dependent lateral boundary conditions provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM), has been used to investigate the mechanism of ground warming over the Tibetan Plateau (TP). The model results show that when CO2 in the atmosphere is doubled, a strong ground warming occurs in the TP. Two regions within it with the largest warming are in the eastern TP (region I) and along the southwestern and western slopes (region II). Moreover, in region I the ground warming in the winter half year is stronger than that in the summer half year, but in region II the warming difference between the seasons becomes opposite to that in region I, i.e., the warming is strong in the summer half year and weak in the winter half year. There are indications that the summer monsoon enhances but the winter monsoon weakens when CO2 is doubled. A strong elevation dependency of ground warming is found in region I for the winter half year, and in region II for both winter and summer half years at elevations below 5 km. The simulated characteristics of ground warming in the TP are consistent with the observations. In region I, when CO2 is doubled, the cloud amount increases at lower elevations and decreases at higher elevation for the winter half year. As a consequence, at lower elevations the short wave solar radiation absorbed at the surface declines, and the downward long wave flux reaching the surface enhances; on the other hand, at higher elevations the surface solar radiation flux increases and the surface infrared radiation flux shows a more uniform increase. The net effect of the changes in both radiation fluxes is an enhanced surface warming at higher elevations, which is the primary cause of the elevation dependency in the surface warming. In the summer half year the cloud amount reduces as a result of doubling CO2 in region I for all elevations, and there is no elevation dependency detected in the ground warming. Furthermore, there is little snow existing in region I for both summer and winter half years, and the impact of snow-albedo feedback is not significant. In region II, although the changes in the cloud amount bear a resemblance to those in region I, the most significant factor affecting the surface energy budget is the depletion of the snow cover at higher elevations, which leads to a reduction of the surface albedo. This reduction in turn leads to an enhancement in the solar radiation absorbed in the surface. The snow-albedo feedback mechanism is the most essential cause of the elevation dependency in the surface warming for region II.
Read full abstract