Surface-state electrons floating on liquid Helium have been served as one of the great potential experimental platforms to implement quantum computation, wherein the qubits are usually encoded by either the lowest two levels of the vertical vibrations (i.e., Hydrogen-like atoms) or the electronic spins. Given the relevant operations require additional techniques, such as the corresponding millimeter-wave or magnetic field manipulations, here we investigate how to implement the scalable quantum computation with a trapped electron array by alternatively using the usual centimeter-wave manipulating techniques. This is because the eigenfrequency of the present qubit, encoded by the two lowest levels of the lateral vibration of the trapped electron, is limited in the centimeter-wave band. We show that, by biasing the electrodes properly and driving the coplanar waveguide transmission line resonator, the electrons can be individually trapped in a series of anharmonic potentials on liquid Helium. Therefore, the well-developed circuit quantum electrodynamics technique for the implementation of superconducting quantum computation can be conveniently utilized here in the present quantum computing platform (proposed firstly in Phys Rev Lett 105:040503, 2010, to implement the fundamental logic gates, typically such as the single-qubit rotations of the individually addressable trapped electrons, the switchable two-qubit manipulations between the electrons trapped in the distant traps, and also the high-fidelity readouts of the target qubits. The feasibility of the proposal is also discussed by numerical simulations.
Read full abstract