Autism spectrum disorder (ASD) affects social interaction, communication, and behavior. Early diagnosis is important as it enables timely intervention that can significantly improve long-term outcomes, but current diagnostic, which rely heavily on behavioral observations and clinical interviews, are often subjective and time-consuming. This study introduces an AI-based approach that uses T1-weighted structural MRI (sMRI) scans, network analysis, and vision transformers to automatically diagnose ASD. sMRI data from 79 ASD patients and 105 healthy controls were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. Complex network analysis (CNA) features and ViT (Vision Transformer) features were developed for predicting ASD. Five models were developed for each type of features: logistic regression, support vector machine (SVM), gradient boosting (GB), K-nearest neighbors (KNN), and neural network (NN). 25 models were further developed by federating the two sets of 5 models. Model performance was evaluated using accuracy, area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and specificity via fivefold cross-validation. The federate model CNA(KNN)-ViT(NN) achieved highest performance, with accuracy 0.951 ± 0.067, AUC-ROC 0.980 ± 0.020, sensitivity 0.963 ± 0.050, and specificity 0.943 ± 0.047. The performance of the ViT-based models exceeds that of the complex network-based models on 80% of the performance metrics. By federating CNA models, the ViT models can achieve better performance. This study demonstrates the feasibility of using CNA and ViT models for the automated diagnosis of ASD. The proposed CNA(KNN)-ViT(NN) model achieved better accuracy in ASD classification based solely on T1 sMRI images. The proposed method's reliance on widely available T1 sMRI scans highlights its potential for integration into routine clinical examinations, facilitating more efficient and accessible ASD screening.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
18030 Articles
Published in last 50 years
Articles published on Clinical Interview
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
16826 Search results
Sort by Recency