The aging precipitation behavior of 6061 aluminum alloy that underwent iron casting and water-cooled copper casting and 6061 aluminum with Mn and Zr elements added was studied. Firstly, the hardness curves, tensile properties, and fracture morphology of four aging alloys—6061 (iron mold casting), 6061 (water-cooled copper mold casting), 6061-0.15Mn-0.05Zr (iron mold casting), and 6061-0.15Mn-0.05Zr (water-cooled copper mold casting)—were studied. The results of the aging hardness curve show that the aging precipitated phase of the 6061 alloy cast with a water-cooled copper mold is dispersed. The addition of Mn increases the amount of coarse inclusion α-(AlMnFeSi) in the alloy, resulting in a decrease in the age hardening property. The addition of Zr is related to the nucleation and growth of the G.P. region in the early aging period, mainly changing the formation rate and quantity of the G.P. region, leading to the advancement of peak aging and an increase in hardness. After the G.P. region gradually transforms into the β phase, the hardness of the alloy increases with the increase in the volume fraction of the β phase. When the β″ phase is coarsened to the point where the fault line can be bypassed, the transitional metastable β′ phase begins to precipitate, and the coherent distortion around it weakens, indicating over-aging. Finally, the equilibrium phase Mg2Si is formed. The results of the tensile tests indicate that the tensile strength and yield strength of the 6061-0.15Mn-0.05Zr alloy produced by water-cooled copper casting after aging are 356 Mpa and 230 Mpa, respectively. These values are 80 MPa and 75 MPa higher, respectively, than those of the 6061 aluminum alloy produced via iron casting. However, the elongation is by 5%. The fracture morphology of the tensile sample of the aging alloy shows that dislocation slip in the alloy results in dislocation plugging, stress concentration, and the initiation of crack cleavage on the surface. The fracture of the water-cooled copper mold-casting alloy is a ductile fracture of the microporous aggregation type, and the macroscopic fracture exhibits an obvious “neck shrinkage” phenomenon. The fracture analysis is consistent with the mechanical properties. The DSC curve shows that there is no enrichment process of solute atoms during the heating process, and the aging precipitation process after homogenization is as follows: G.P. zone → β″ phase → β′ phase. The aging precipitation process of the water-cooled copper casting alloy after homogenization treatment is as follows: β″ phase → β′ phase (no precipitation in the G.P. zone was observed). The results of the differential scanning calorimetry (DSC) analysis show that the main strengthening phase in the experimental alloy system is the β″ phase. The activation energies for the β″ phase precipitation were calculated and found to be 147 KJ/mol, 217 KJ/mol, 185 KJ/mol, and 235 KJ/mol, respectively. Additionally, a kinetic equation for the β″ phase precipitation during alloy aging was fitted.
Read full abstract