PurposeTobramycin (TOB) exhibits variable pharmacokinetic properties due to the clinical condition of patients. This study aimed to investigate the AUC-guided dosing of TOB based on population pharmacokinetic analysis in the treatment of infections caused by Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. MethodsThis retrospective study was conducted between January 2010 and December 2020 after obtaining approval from our institutional review board. For 53 patients who received therapeutic drug monitoring of TOB, a population pharmacokinetic model was developed with covariates of estimated glomerular filtration rate using serum creatinine (eGFRcre) on clearance (CL) and weight on both CL and Vd in exponential error modeling (CL = 2.84 × [weight/70] × eGFRcre0.568, interindividual variability [IIV] = 31.1%; Vd = 26.3 × [weight/70], IIV = 20.2%; residual variability = 28.8%). FindingsThe final regression model for predicting 30-day mortality was developed with risk factors of AUC during a 24-hour period after the first dose to MIC ratio (odds ratio [OR] = 0.996; 95% CI, 0.968–1.003) and serum albumin (OR = 0.137; 95% CI, 0.022–0.632). The final regression model for predicting acute kidney injury was developed with the risk factors of C-reactive protein (OR = 1.136; 95% CI, 1.040–1.266) and AUC during a 72-hour period after the first dose (OR = 1.004; 95% CI, 1.000–1.001). A dose of 8 or 15 mg/kg was beneficial for achievement of AUC during a 24-hour period after the first dose/MIC >80 and trough concentration <1 µg/mL in patients with preserved kidney function and TOB CL >4.47 L/h/70 kg in the events of MIC of 1 or 2 µg/mL, respectively. We propose that the first dose of 15, 11, 10, 8, and 7 mg/kg for eGFRcre >90, 60 to 89, 45 to 59, 30 to 44, and 15 to 29 mL/min/1.73 m2 be followed by therapeutic drug monitoring at peak and 24 hours after the first dose. ImplicationsThis study suggests that TOB use encourages the replacement of trough- and peak-targeted dosing with AUC-guided dosing.
Read full abstract