Abstract. This paper also addresses quantitative trading where machine learning techniques are applied. Quantitative trading uses historical data and makes future predictions that inform and optimise trading strategies. There are two machine learning techniques used in quantitative trading: supervised and reinforcement learning. In a supervised learning setting, machine learning techniques such as regression analysis, classification models and time series prediction are used to forecast future possible outcomes in the market. Data such as historical prices, volume and financial indicators are used to determine trends that inform and optimise trading decisions. Reinforcement learning is another machine learning technique in quantitative trading where adaptive strategies using a reward system are designed. These strategies then analyse market dynamics and optimise trades through interaction and feedback. The third technique, deep learning, takes neural networks and uses them to process large-scale, complex data. It's particularly useful in quantitative trading as it generates more accurate predictions; for instance, neural networks are capable of learning trading signals from price and volume data and even from news headlines. By enabling computers to analyse large quantities of training data, deep learning improves the predictive accuracy of future price trends. It also helps to generate trading signals that are more robust to market conditions.
Read full abstract