The stability of a neutral dynamic system is a major study in the class of delay systems. In this effort, we study the stability of fractional-order nonlinear dynamic systems utilizing Lyapunov direct method based on fractional calculus (fractional differential operator and fractional integral operator type Riemann–Liouville operators). We suggest a new non-Lipschitz fractional Lyapunov function. This function is a generalization of the well known Lyapunov functions. We investigate the speed of convergence for special cases. Applications are clarified in the sequel.
Read full abstract