AbstractWintertime precipitation is vital to the growth of glaciers in the northern hemisphere. We find a tripole mode of precipitation (PTM), with each pole of the mode extending zonally over the eastern hemisphere roughly between 30°W and 120°E, and the positive/negative/positive structure for its positive phase extending meridionally from the Arctic to the continental North Africa–Eurasia. The large-scale dynamics associated with the PTM is explored. The positive phase of the PTM is associated with the negative while eastward-shifted phase of the North Atlantic Oscillation (NAO) and a zonal band of positive SST anomaly in the tropics, together with a narrowed Hadley cell and weakened Ferrel cell. While being north-eastward tilted and separated from their North Africa-Eurasia counterpart in the climatological mean, the upper-tropospheric westerly jets over the east Pacific and north Atlantic become extending zonally and shifting southward and hence form a circumpolar subtropical jet as a whole by connecting with the westerly jets over the North Africa-Eurasia. The enhanced zonal winds over the north Atlantic promote more synoptic-scale transient eddies which are waveguided by the jet streams. The polar vortex weakens and cold air dips southward from the North Pole. Further diagnosis of the E-vectors suggests that transient eddies have a positive feedback on the weakening of Ferrel cell. Opposite features are associated with the negative phase of the PTM. The reconstructed time series using multiple linear regression on the NAO index and the tropical SST averaged over 20°S– 20°N, can explain 62.4% of the variance of the original the original precipitation time series.
Read full abstract