A pair of correlated light quanta of 532 nm wavelength with the same linear polarization but divergent directions of propagation was produced by non-linear optical parametric down conversion in a crystal of deuterated potassium di-hydrogen phosphate from a 100 ps duration laser pulse of 266 nm wavelength. Each light quantum was converted to a circular polarization state or a linear polarization state (orthogonal) and was reflected by a turning mirror to superpose with the other at a beam splitter to produce a two-quanta superposition state. For coincident detection of the two light quanta at separated detectors, correlations of the Einstein-Podolsky-Rosen type for the polarizations have been observed as predicted by our analysis. In preliminary runs with limited data we have measured a violation of Bell's inequality by three standard deviations. We are planning to extend our experiments to include a truly random delayed choice between two analyser settings at each detector while maintaining a spacelike separation between the detections.
Read full abstract