PurposeWe investigated the effects of percutaneous valved stent implantation in the ascending aorta as an alternative treatment for aortic regurgitation in a canine model. Materials and methodsA total of 16 healthy dogs weighing an average of 18.3 ± 2.1 kg were used for the establishment of animal models of chronic aortic regurgitation by percutaneous aortic valve perforation and balloon dilation. At 2 mo after successful model establishment, all experimental animals underwent valved stent implantation in the ascending aorta and then were followed up for 3 mo. ResultsExperimental models of chronic aortic regurgitation were successfully established in 10 dogs. Surviving dogs underwent successful valved stent implantation in the ascending aorta and were subsequently followed up for 3 mo. The level of instantaneous aortic regurgitation at 3-mo follow-up was significantly reduced compared with that before valved stent implantation (2.4 ± 0.9 versus 10.6 ± 2.1 mL/s, P < 0.05). The left ventricular ejection fraction was significantly increased (53.8 ± 4.2% versus 37.8 ± 3.7%, P < 0.05), and the left ventricular end-diastolic volume was also significantly reduced (30.3 ± 2.2 versus 40.1 ± 3.6 mL, P < 0.05). No paravalvular leak, stroke, atrioventricular block, or other complications occurred in dogs undergoing valved stent implantation. ConclusionsPercutaneous valved stent implantation in the ascending aorta is feasible, effective, and safe as an alternative treatment for very high-risk aortic regurgitation in a canine model.
Read full abstract