Local administration of the calcium-channel blocker (CCB), diltiazem, via intratympanic (IT) chitosan-glycerophosphate (CGP) hydrogel will protect against cisplatin-induced ototoxicity. Cisplatin induces calcium-mediated apoptosis of cochlear outer hair cells (OHCs). Previous work demonstrated otoprotection and reduced auditory brainstem response (ABR) threshold shifts in a cisplatin-induced ototoxicity mouse model treated with multiple doses of IT diltiazem given in solution. Here, we evaluated the role of a single dose of IT CGP-diltiazem as a novel otoprotectant against cisplatin-induced ototoxicity. Baseline pure-tone and click-evoked ABRs were performed in control (IT CGP-saline, n = 13) and treatment (IT CGP-diltiazem 2 mg/kg, n = 9) groups of female CBA/J mice. A single dose of IT CGP hydrogel was administered just before intraperitoneal injection of cisplatin (14 mg/kg). On Day 7 posttreatment, ABRs were performed and cochleae were harvested. Hair cells were quantified using anti-myosin VIIa immunostaining and inner hair cell ribbon synapses were quantified using Ctbp2 immunostaining. There was a statistically significant effect of treatment on click- and tone-evoked ABRs between groups. The mean threshold shifts were significantly reduced in both click- and tone-evoked ABRs on Day 7 in IT CGP-diltiazem treated mice compared with CGP-saline control mice. There were no significant differences in OHC counting between groups, but there appears to be an otoprotection against loss of synapses in the apical turn from IT CGP-diltiazem treated mice (p < 0.05). This preliminary work suggests that IT CGP-diltiazem reduces ABR threshold shifts with possible mechanisms of protecting ribbon synapses in the setting of cisplatin-induced ototoxicity. More work is necessary to determine the mechanism underlying this otoprotection.
Read full abstract