We present the propagation dynamics of the second-order chirped circular Pearcey Gaussian vortex beam (CCPGVB) in the Fractional nonlinear Schrödinger equation (FNSE) numerically and find some interesting behaviors. The CCPGVB can propagate like quasi solitons along the propagation direction. The autofocusing effect of the CCPGVB gets stronger while the autofocusing length monotonously decreases and the number of focus become lessen as the Lévy index approaches 2. By adjusting the Lévy index, the chirp factor β, the input power Pin, as well as the order of the off-axis vortex pair (m,l), the results show that these factors can effectively control the propagation dynamics of the CCPGVB, including intensity distribution, focal length, focal intensity, the light spot and the number of focus. Finally, the Poynting vector and the angular momentum of the CCPGVB prove the autofocusing and diffraction behaviors.
Read full abstract