A chiral bobber is a localized three-dimensional magnetization configuration, terminated by a singularity. Chiral bobbers coexist with magnetic skyrmions in chiral magnets, lending themselves to new types of skyrmion-complementary bits of information. However, the on-demand creation of bobbers, as well as their direct observation remained elusive. Here, we introduce a new mechanism for creating a stable chiral bobber lattice state via the proximity of two skyrmion species with comparable size. This effect is experimentally demonstrated in a Cu_{2}OSeO_{3}/[Ta/CoFeB/MgO]_{4} heterostructure in which an exotic bobber lattice state emerges in the phase diagram of Cu_{2}OSeO_{3}. To unambiguously reveal the existence of the chiral bobber lattice state, we have developed a novel characterization technique, magnetic truncation rod analysis, which is based on resonant elastic x-ray scattering.
Read full abstract