Abstract(11bR,11′bR)‐4,4′‐(1,2‐Phenylene)bis[4,5‐dihydro‐3H‐dinaphtho[2,1‐c:1′,2′‐e]phosphepin] [abbreviated as (R)‐BINAPHANE], (3R,3′R,4S,4′S,11bS,11′bS)‐4,4′‐bis(1,1‐dimethylethyl)‐4,4′,5,5′‐tetrahydro‐3,3′‐bi‐3H‐dinaphtho[2,1‐c:1′,2′‐e]phosphepin [(S)‐BINAPINE], (1S,1′S,2R,2′R)‐1,1′‐bis(1,1‐dimethylethyl)‐2,2′‐biphospholane [(S,S,R,R)‐TANGPHOS] and (2R,2′R,5R,5′R)‐1,1′‐(1,2‐phenylene)bis[2,5‐bis(1‐methylethyl)phospholane] [(R,R)‐i‐Pr‐DUPHOS] are C2‐bridged chiral diphosphines that form stable complexes with palladium(II) and platinum(II) containing a five‐membered chelate ring. The Pd(II)‐BINAPHANE catalyst displayed good to excellent enantioselectivities with ee values as high as 99.0% albeit in low yields for the carbonyl‐ene reaction between phenylglyoxal and alkenes. Its Pt(II) counterpart afforded improved yields while retaining satisfactory enantioselectivity. For the carbonyl‐ene reaction between ethyl trifluoropyruvate and alkenes, the Pd(II)‐BINAPHANE catalyst afforded both good yields and extremely high enantioselectivities with ees as high as 99.6%. A comparative study on the Pd(II) catalysts of the four C2‐bridged chiral diphosphines revealed that Pd(II)‐BINAPHANE afforded the best enantioselectivity. The ee values derived from Pd(II)‐BINAPHANE are much higher than those derived from the other three Pd(II) catalysts. A comparison of the catalyst structures shows that the Pd(II)‐BINAPHANE catalyst is the only one that has two bulky (R)‐binaphthyl groups close to the reaction site. Hence it creates a deep chiral space that can efficiently control the reaction behavior in the carbonyl‐ene reactions resulting in excellent enantioselectivity.
Read full abstract