We describe a new kudoid species, Kudoa tanakai n. sp., in the scalpel sawfish, Prionurus scalprum (Actinopterygii: Acanthuriformes: Acanthuridae), from the natural water around western Japan. The plasmodia were filamentous, localized in pseudocysts in the myofibers of the trunk muscles. The occurrence of plasmodia in the trunk muscle showed no site preference. Its myxospores were spheroid, measuring 6.6-7.6 (7.0) µm by 5.8-6.9 (6.3) µm in apical view (width) and 5.7-6.6 (6.2) in length (n = 30), with four shell valves and a corresponding number of spheroid polar capsules. Shell valves lacked apical protrusions, but scanning electron microscopy revealed that one of the four shell valves had two semi-lunar flaps at its apical terminus. Nucleotide sequencing of the small and large subunit ribosomal RNA genes of the present isolate showed phylogenetic affinities to kudoid species characterized by spheroid myxospores, such as K. musculoliquefaciens, K. hemiscylli, and K. carcharhini, but was molecularly and morphometrically distinct from these and other kudoid species. For direct comparison, Kudoa hemiscylli was collected from the Pacific spadenose shark, Scoliodon macrorhynchos (Elasmobranchii: Carcharhiniformes: Carcharhinidae), in the South China Sea off Guangdong Province, China, and the myxospore surface of the species was observed using scanning electron microscopy. Our study describes the new host and distribution record of this kudoid species originally described from a variety of elasmobranchs in the Australian Coral Sea.
Read full abstract