The viscosity of atmospheric aerosol particles affects a number of key physical and chemical particle properties, such as composition and reactivity. However, determination of the microscopic viscosity of aerosol particles is a non-trivial task. We report a new method of imaging viscosity in a variety of model aerosol systems, based on a fluorescence lifetime determination of viscosity-sensitive fluorophores termed molecular rotors. We report the viscosity changes associated with the relative humidity dependent hygroscopicity of NaCI and sucrose aerosols, as well as reaction dependent changes in viscosity during ozonolysis of oleic acid aerosols. The Fluorescence Lifetime Imaging Microscopy (FLIM) of molecular rotors shows great promise in understanding important fundamental aerosol properties, which can be both time-dependent and spatially variable through the aerosol particle.
Read full abstract