AbstractAs a fission product in high‐level radioactive nuclear waste, Mo has low solubility in borosilicate glass. Fe2O3 is not only a prevalent transition metal element but also a major corrosion product in high‐level radioactive nuclear waste. Against this backdrop, the effect of Fe2O3 content on the structure and chemical durability of typical molybdenum‐containing sodium borosilicate glasses for nuclear waste immobilization are studied. The results show that the samples containing more than 3.85 mol% Fe2O3, a completely homogenous amorphous glass sample is obtained. Moreover, the mechanism of the effect of Fe2O3 on the solubility of Mo is discussed in detail. In this work, a portion of Fe3+ is reduced to Fe2+ and enters into the glasses as a charge compensation ion as Fe2+O6. Concurrently, Fe3+ ions contribute to the formation of the glass networks as Fe3+O4. Iron incorporation can improve the chemical durability of the sample.
Read full abstract