Magnetic resonance imaging (MRI) is generally used to identify, describe, and evaluate treatment responses for focal hepatic lesions.However, the diagnosis and differentiation of such lesions require considerable input from radiologists. In order to reduce these difficulties, radiomics is an artificial intelligence (AI)-based quantitative method that employs the extraction of image features to reliably detect and differentiate focal hepatic lesions. MRI radiomics is a novel technique for the characterization of focal hepatic lesions. It can aid in preoperative evaluation, treatment approach, and forecast microvascular invasion. Although many studies have illustrated its efficiency there are certain limitations such as the absence of a large diverse dataset, comparison with other AI models, integration with histopathological findings, clinical utility, and feasibility.
Read full abstract