BackgroundBipolar disorder (BPD) is a kind of manic and depressive phase alternate episodes of serious mental illness, and it is correlated with well-documented cortical brain abnormalities. Emerging evidence supports that autophagy dysfunction in neuronal system contributes to pathophysiological changes in neurological disease. However, the role of autophagy in bipolar disorder has rarely been elucidated. This study aimed to identify the autophagy-related gene as a potential biomarker Correlated to immune infiltration in BPD.MethodsThe microarray dataset GSE23848 and autophagy-related genes (ARGs) were downloaded. Differentially expressed genes (DEGs) between normal and BPD samples were screened using the R software. Machine learning algorithms were performed to screen the significant candidate biomarker from autophagy-related differentially expressed genes (ARDEGs). The correlation between the screened ARDEGs and infiltrating immune cells was explored through correlation analysis.ResultsIn this study, the autophagy pathway was abundantly enriched and activated in BPD, as indicated by Pathway enrichment analysis. We identified 16 ARDEGs in BPD compared to the normal group. A signature of 4 ARDEGs (ERN1, ATG3, CTSB, and EIF2AK3) was screened. ROC analysis showed that the above genes have good diagnostic performance. In addition, immune correlation analysis considered that the above four genes significantly correlated with immune cells in BPD.ConclusionsAutophagy - immune cell axis mediates pathophysiological changes in BPD. Four important ARDEGs are prospective to be potential biomarkers associated with immune infiltration in BPD and helpful for the prediction or diagnosis of BPD.
Read full abstract