Malignant transformation is now known to require a series of molecular alterations that disrupt a limited number of pathways including autocrine and paracrine responses to growth factors, cell-cycle control, senescence, motility, and invasion. Studies on hereditary cancers have established genetic changes as the primary driving force for these molecular alterations. Recently, however, it has been recognized that epigenetic changes, defined as clonal changes in gene expression without accompanying changes in primary DNA coding sequence, can also be a driving force in neoplastic transformation, for selected genes, and in specific tumors. DNA methylation within gene promoters and associated alterations in histone acetylation appear primary mediators of epigenetic inheritance in cancer cells. In the large intestine, aberrant DNA methylation arises very early, initially in normal-appearing mucosa, and may be part of the age-related field defect observed in sporadic colorectal neoplasia. Aberrant methylation also contributes to later stages of colon cancer formation and progression through a hypermethylator phenotype termed cytosine phosphoguanosine (CpG) island methylator phenotype (CIMP), which appears to be a defining event in approximately half of all sporadic tumors. In sporadic colon cancer, CIMP has distinct epidemiologic and clinical features and is responsible for most cases of microsatellite instability related to hMLH1 inactivation. The recognition of epigenetic changes as a driving force in colorectal neoplasia opens new areas of research in disease epidemiology, risk assessment, screening, and treatment.
Read full abstract