The dorsal raphe nucleus (DRN) and surrounding midbrain of 74 cats were stimulated both electrically and chemically, and carotid flows were measured with electromagnetic flow probes. Stimulation of the DRN caused a frequency-dependent decrease in common carotid vascular resistance, which was abolished by bilateral section of the facial nerve intracranially. Injection of DL-homocysteic acid into the DRN reproduced the effect of electrical stimulation, indicating that the responses arose from excitation of cell bodies within the DRN, not from fibers of passage. The responses were mediated entirely within the brain stem since they remained intact after high spinal cord section. The vasodilator response was blocked by the intravenous administration of the nicotinic ganglion blocker hexamethonium but not by the alpha-adrenoceptor blocker phentolamine. The responses were unaffected by intravenous administration of methysergide but were markedly reduced after depletion of central serotonin by pretreatment with the serotonin depletor, p-chlorophenylalanine. A poststimulus constrictor response was mediated by release of catecholamines from the adrenal medulla and was blocked by the alpha-adrenoceptor antagonist phentolamine. No response involved supracollicular mechanisms since they persisted after decerebration.
Read full abstract