Real-world categories often contain exceptions that disobey the perceptual regularities followed by other members. Prominent psychological and neurobiological theories indicate that exception learning relies on the flexible modulation of object representations, but the specific representational shifts key to learning remain poorly understood. Here, we leveraged behavioral and computational approaches to elucidate the representational dynamics during the acquisition of exceptions that violate established regularity knowledge. In our study, participants (n = 42) learned novel categories in which regular and exceptional items were introduced successively; we then fitted a computational model to individuals' categorization performance to infer latent stimulus representations before and after exception learning. We found that in the representational space, exception learning not only drove confusable exceptions to be differentiated from regular items, but also led exceptions within the same category to be integrated based on shared characteristics. These shifts resulted in distinct representational clusters of regular items and exceptions that constituted hierarchically structured category representations, and the distinct clustering of exceptions from regular items was associated with a high ability to generalize and reconcile knowledge of regularities and exceptions. Moreover, by having a second group of participants (n = 42) to judge stimuli's similarity before and after exception learning, we revealed misalignment between representational similarity and behavioral similarity judgments, which further highlights the hierarchical layouts of categories with regularities and exceptions. Altogether, our findings elucidate the representational dynamics giving rise to generalizable category structures that reconcile perceptually inconsistent category members, thereby advancing the understanding of knowledge formation.
Read full abstract