• All Solutions All Solutions Caret
    • Editage

      One platform for all researcher needs

    • Paperpal

      AI-powered academic writing assistant

    • R Discovery

      Your #1 AI companion for literature search

    • Mind the Graph

      AI tool for graphics, illustrations, and artwork

    Unlock unlimited use of all AI tools with the Editage Plus membership.

    Explore Editage Plus
  • Support All Solutions Support
    discovery@researcher.life
Discovery Logo
Paper
Search Paper
Cancel
Ask R Discovery
Explore

Feature

  • menu top paper My Feed
  • library Library
  • translate papers linkAsk R Discovery
  • chat pdf header iconChat PDF
  • audio papers link Audio Papers
  • translate papers link Paper Translation
  • chrome extension Chrome Extension

Content Type

  • preprints Preprints
  • conference papers Conference Papers
  • journal articles Journal Articles

More

  • resources areas Research Areas
  • topics Topics
  • resources Resources
git a planGift a Plan

Cas9 Specificity Research Articles

  • Share Topic
  • Share on Facebook
  • Share on Twitter
  • Share on Mail
  • Share on SimilarCopy to clipboard
Follow Topic R Discovery
By following a topic, you will receive articles in your feed and get email alerts on round-ups.
Overview
67 Articles

Published in last 50 years

Related Topics

  • Protospacer Adjacent Motif
  • Protospacer Adjacent Motif
  • Cas9 Nuclease
  • Cas9 Nuclease
  • Guide RNA
  • Guide RNA
  • Genome Editing
  • Genome Editing

Articles published on Cas9 Specificity

Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
64 Search results
Sort by
Recency
BPS2025 - Integrating accelerated molecular simulations and AI to elucidate Cas9 specificity factors

BPS2025 - Integrating accelerated molecular simulations and AI to elucidate Cas9 specificity factors

Read full abstract
  • Journal IconBiophysical Journal
  • Publication Date IconFeb 1, 2025
  • Author Icon Gayatri Panda
Cite IconCite
Save

BPS2025 - Integrating accelerated molecular simulations and AI to elucidate Cas9 specificity factors

BPS2025 - Integrating accelerated molecular simulations and AI to elucidate Cas9 specificity factors

Read full abstract
  • Journal IconBiophysical Journal
  • Publication Date IconFeb 1, 2025
  • Author Icon Gayatri Panda
Cite IconCite
Save

Modulation of CRISPR-Cas9 Cleavage with an Oligo-Ribonucleoprotein Design.

Clustered regularly interspaced short palindromic repeats (CRISPR) associated protein Cas9 system has been widely used for genome editing. However, the editing or cleavage specificity of CRISPR Cas9 remains a major concern due to the off-target effects. The existing approaches to control or modulate CRISPR Cas9 cleavage include engineering Cas9 protein and development of anti-CRISPR proteins. There are also attempts on direct modification of sgRNA, for example, structural modification via truncation or hairpin design, or chemical modification on sgRNA such as partially replacing RNA with DNA. The above-mentioned strategies rely on extensive protein engineering and direct chemical or structural modification of sgRNA. In this study, we proposed an indirect method to modulate CRISPR Cas9 cleavage without modification on Cas9 protein or sgRNA. An oligonucleotide was used to form an RNA-DNA hybrid structure with the sgRNA spacer, creating steric hindrance during the Cas9 mediated DNA cleavage process. We first introduced a simple and robust method to assemble the oligo-ribonucleoprotein (oligo-RNP). Next, the cleavage efficiency of the assembled oligo-RNP was examined using different oligo lengths in vitro. Lastly, we showed that the oligo-RNP directly delivered into cells could also modulate Cas9 activity inside cells using three model gene targets with reduced off-target effects.

Read full abstract
  • Journal IconChembiochem : a European journal of chemical biology
  • Publication Date IconJan 20, 2025
  • Author Icon Yahui Gao + 2
Cite IconCite
Save

Visualizing the conformational landscape of CRISPR-Cas9 through kinetics-informed structural studies.

Visualizing the conformational landscape of CRISPR-Cas9 through kinetics-informed structural studies.

Read full abstract
  • Journal IconMethods in enzymology
  • Publication Date IconJan 1, 2025
  • Author Icon Grace N Hibshman + 1
Cite IconCite
Save

Deciphering Cas9 specificity: Role of domain dynamics and RNA:DNA hybrid interactions revealed through machine learning and accelerated molecular simulations

Deciphering Cas9 specificity: Role of domain dynamics and RNA:DNA hybrid interactions revealed through machine learning and accelerated molecular simulations

Read full abstract
  • Journal IconInternational Journal of Biological Macromolecules
  • Publication Date IconNov 19, 2024
  • Author Icon Gayatri Panda + 1
Cite IconCite
Save

Peptide Nucleic Acid-Mediated Regulation of CRISPR-Cas9 Specificity.

Although CRISPR-Cas9 gene therapies have proven to be a powerful tool across many applications, improvements are necessary to increase the specificity of this technology. Cas9 cutting in off-target sites remains an issue that limits CRISPR's application in human-based therapies. Treatment of autosomal dominant diseases also remains a challenge when mutant alleles differ from the wild-type sequence by only one base pair. Here, we utilize synthetic peptide nucleic acids (PNAs) that bind selected spacer sequences in the guide RNA (gRNA) to increase Cas9 specificity up to 10-fold. We interrogate variations in PNA length, binding position, and degree of homology with the gRNA. Our findings reveal that PNAs bound in the region distal to the protospacer adjacent motif (PAM) site effectively enhance specificity in both on-target/off-target and allele-specific scenarios. In addition, we demonstrate that introducing deliberate mismatches between PNAs bound in the PAM-proximal region of the gRNA can modulate Cas9 activity in an allele-specific manner. These advancements hold promise for addressing current limitations and expanding the therapeutic potential of CRISPR technology.

Read full abstract
  • Journal IconNucleic acid therapeutics
  • Publication Date IconJul 22, 2024
  • Author Icon Kelly E W Carufe + 2
Cite IconCite
Save

High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9.

The high-fidelity (HF1), hyper-accurate (Hypa), and evolved (Evo) variants of the CRISPR-associated protein 9 (Cas9) endonuclease are critical tools to mitigate off-target effects in the application of CRISPR-Cas9 technology. The mechanisms by which mutations in recognition subdomain 3 (Rec3) mediate specificity in these variants are poorly understood. Here, solution nuclear magnetic resonance and molecular dynamics simulations establish the structural and dynamic effects of high-specificity mutations in Rec3, and how they propagate the allosteric signal of Cas9. We reveal conserved structural changes and dynamic differences at regions of Rec3 that interface with the RNA:DNA hybrid, transducing chemical signals from Rec3 to the catalytic His-Asn-His (HNH) domain. The variants remodel the communication sourcing from the Rec3 α helix 37, previously shown to sense target DNA complementarity, either directly or allosterically. This mechanism increases communication between the DNA mismatch recognition helix and the HNH active site, shedding light on the structure and dynamics underlying Cas9 specificity and providing insight for future engineering principles.

Read full abstract
  • Journal IconScience Advances
  • Publication Date IconMar 8, 2024
  • Author Icon Erin Skeens + 6
Open Access Icon Open Access
Cite IconCite
Save

Negative DNA supercoiling induces genome-wide Cas9 off-target activity

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology invivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate invivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology invitro and invivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.

Read full abstract
  • Journal IconMolecular Cell
  • Publication Date IconOct 1, 2023
  • Author Icon Matthew D Newton + 12
Open Access Icon Open Access
Cite IconCite
Save

CRISPR-Cas9 Activities with Truncated 16-Nucleotide RNA Guides Are Tuned by Target Duplex Stability Beyond the RNA/DNA Hybrid.

CRISPR-Cas9 has been adapted as a readily programmable genome manipulation agent, and continuing technological advances rely on an in-depth mechanistic understanding of Cas9 target discrimination. Cas9 interrogates a target by unwinding the DNA duplex to form an R-loop, where the RNA guide hybridizes with one of the DNA strands. It has been shown that RNA guides shorter than the normal length of 20-nucleotide (-nt) support Cas9 cleavage activity by enabling partial unwinding beyond the RNA/DNA hybrid. To investigate whether DNA segment beyond the RNA/DNA hybrid can impact Cas9 target discrimination with truncated guides, Cas9 double-stranded DNA cleavage rates (kcat) were measured with 16-nt guides on targets with varying sequences at +17 to +20 positions distal to the protospacer-adjacent-motif (PAM). The data reveal a log-linear inverse correlation between kcat and the PAM+(17-20) DNA duplex dissociation free energy (ΔGNN(17-20)0), with sequences having smaller ΔGNN(17-20)0 showing faster cleavage and a higher degree of unwinding. The results indicate that, with a 16-nt guide, "peripheral" DNA sequences beyond the RNA/DNA hybrid contribute to target discrimination by tuning the cleavage reaction transition state through the modulation of PAM-distal unwinding. The finding provides mechanistic insights for the further development of strategies that use RNA guide truncation to enhance Cas9 specificity.

Read full abstract
  • Journal IconBiochemistry
  • Publication Date IconAug 8, 2023
  • Author Icon Yue Li + 6
Open Access Icon Open Access
Cite IconCite
Save

Sensing the DNA-mismatch tolerance of catalytically inactive Cas9 via barcoded DNA nanostructures in solid-state nanopores.

Single-molecule quantification of the strength and sequence specificity of interactions between proteins and nucleic acids would facilitate the probing of protein-DNA binding. Here we show that binding events between the catalytically inactive Cas9 ribonucleoprotein and any pre-defined short sequence of double-stranded DNA can be identified by sensing changes in ionic current as suitably designed barcoded linear DNA nanostructures with Cas9-binding double-stranded DNA overhangs translocate through solid-state nanopores. We designed barcoded DNA nanostructures to study the relationships between DNA sequence and the DNA-binding specificity, DNA-binding efficiency and DNA-mismatch tolerance of Cas9 at the single-nucleotide level. Nanopore-based sensing of DNA-barcoded nanostructures may help to improve the design of efficient and specific ribonucleoproteins for biomedical applications, and could be developed into sensitive protein-sensing assays.

Read full abstract
  • Journal IconNature biomedical engineering
  • Publication Date IconAug 7, 2023
  • Author Icon Sarah E Sandler + 6
Open Access Icon Open Access
Cite IconCite
Save

High-throughput sgRNA testing reveals rules for Cas9 specificity and DNA repair in tomato cells.

CRISPR/Cas9 technology has the potential to significantly enhance plant breeding. To determine the specificity and the mutagenic spectrum of SpCas9 in tomato, we designed 89g(uide) RNAs targeting genes of the tomato MYB transcription factor family with varying predicted specificities. Plasmids encoding sgRNAs and Cas9 were introduced into tomato protoplasts, and target sites as well as 224 predicted off-target sites were screened for the occurrence of mutations using amplicon sequencing. Algorithms for the prediction of efficacy of the sgRNAs had little predictive power in this system. The analysis of mutations suggested predictable identity of single base insertions. Off-target mutations were found for 13 out of 89 sgRNAs and only occurred at positions with one or two mismatches (at 14 and 3 sites, respectively). We found that PAM-proximal mismatches do not preclude low frequency off-target mutations. Off-target mutations were not found at all 138 positions that had three or four mismatches. We compared off-target mutation frequencies obtained with plasmid encoding sgRNAs and Cas9 with those induced by ribonucleoprotein (RNP) transfections. The use of RNPs led to a significant decrease in relative off-target frequencies at 6 out of 17, no significant difference at 9, and an increase at 2 sites. Additionally, we show that off-target sequences with insertions or deletions relative to the sgRNA may be mutated, and should be considered during sgRNA design. Altogether, our data help sgRNA design by providing insight into the Cas9-induced double-strand break repair outcomes and the occurrence of off-target mutations.

Read full abstract
  • Journal IconFrontiers in Genome Editing
  • Publication Date IconJun 6, 2023
  • Author Icon Ellen Slaman + 3
Open Access Icon Open Access
Cite IconCite
Save

DNA mini-circles reveal effects of DNA topology on CRISPR-Cas9 functions.

DNA mini-circles reveal effects of DNA topology on CRISPR-Cas9 functions.

Read full abstract
  • Journal IconBiophysical Journal
  • Publication Date IconFeb 1, 2023
  • Author Icon Yukang Liu + 1
Open Access Icon Open Access
Cite IconCite
Save

Rational Engineering of CRISPR-Cas9 Nuclease to Attenuate Position-Dependent Off-Target Effects.

The RNA-guided Cas9 nuclease from Streptococcus pyogenes has become an important gene-editing tool. However, its intrinsic off-target activity is a major challenge for biomedical applications. Distinct from some reported engineering strategies that specifically target a single domain, we rationally introduced multiple amino acid substitutions across multiple domains in the enzyme to create potential high-fidelity variants, considering the Cas9 specificity is synergistically determined by various domains. We also exploited our previously derived atomic model of activated Cas9 complex structure for guiding new modifications. This approach has led to the identification of the HSC1.2 Cas9 variant with enhanced specificity for DNA cleavage. While the enhanced specificity associated with the HSC1.2 variant appeared to be position-dependent in the in vitro cleavage assays, the frequency of off-target DNA editing with this Cas9 variant is much less than that of the wild-type Cas9 in human cells. The potential mechanisms causing the observed position-dependent effect were investigated through molecular dynamics simulation. Our discoveries establish a solid foundation for leveraging structural and dynamic information to develop Cas9-like enzymes with high specificity in gene editing.

Read full abstract
  • Journal IconThe CRISPR journal
  • Publication Date IconApr 1, 2022
  • Author Icon Zhicheng Zuo + 7
Open Access Icon Open Access
Cite IconCite
Save

Probing the Dynamics of Streptococcus pyogenes Cas9 Endonuclease Bound to the sgRNA Complex Using Hydrogen-Deuterium Exchange Mass Spectrometry.

The Cas9 endonuclease is an essential component of the CRISPR–Cas-based genome editing tools. The attainment of high specificity and efficiency of Cas9 during targetted DNA cleavage is the main problem that limits the clinical application of the CRISPR–Cas9 system. A deep understanding of the Cas9 mechanism and its structural-functional relationships is required to develop strategies for precise gene editing. Here, we present the first attempt to describe the solution structure of Cas9 from S. pyogenes using hydrogen-deuterium exchange mass spectrometry (HDX-MS) coupled to molecular dynamics simulations. HDX data revealed multiple protein regions with deuterium uptake levels varying from low to high. By analysing the difference in relative deuterium uptake by apoCas9 and its complex with sgRNA, we identified peptides involved in the complex formation and possible changes in the protein conformation. The REC3 domain was shown to undergo the most prominent conformational change upon enzyme-RNA interactions. Detection of the HDX in two forms of the enzyme provided detailed information about changes in the Cas9 structure induced by sgRNA binding and quantified the extent of the changes. The study demonstrates the practical utility of HDX-MS for the elucidation of mechanistic aspects of Cas9 functioning.

Read full abstract
  • Journal IconInternational Journal of Molecular Sciences
  • Publication Date IconJan 20, 2022
  • Author Icon Polina V Zhdanova + 5
Open Access Icon Open Access
Cite IconCite
Save

Efficiency, Specificity and Temperature Sensitivity of Cas9 and Cas12a RNPs for DNA-free Genome Editing in Plants.

Delivery of genome editing reagents using CRISPR-Cas ribonucleoproteins (RNPs) transfection offers several advantages over plasmid DNA-based delivery methods, including reduced off-target editing effects, mitigation of random integration of non-native DNA fragments, independence of vector constructions, and less regulatory restrictions. Compared to the use in animal systems, RNP-mediated genome editing is still at the early development stage in plants. In this study, we established an efficient and simplified protoplast-based genome editing platform for CRISPR-Cas RNP delivery, and then evaluated the efficiency, specificity, and temperature sensitivity of six Cas9 and Cas12a proteins. Our results demonstrated that Cas9 and Cas12a RNP delivery resulted in genome editing frequencies (8.7–41.2%) at various temperature conditions, 22°C, 26°C, and 37°C, with no significant temperature sensitivity. LbCas12a often exhibited the highest activities, while AsCas12a demonstrated higher sequence specificity. The high activities of CRISPR-Cas RNPs at 22° and 26°C, the temperature preferred by plant transformation and tissue culture, led to high mutagenesis efficiencies (34.0–85.2%) in the protoplast-regenerated calli and plants with the heritable mutants recovered in the next generation. This RNP delivery approach was further extended to pennycress (Thlaspi arvense), soybean (Glycine max) and Setaria viridis with up to 70.2% mutagenesis frequency. Together, this study sheds light on the choice of RNP reagents to achieve efficient transgene-free genome editing in plants.

Read full abstract
  • Journal IconFrontiers in Genome Editing
  • Publication Date IconJan 12, 2022
  • Author Icon Raviraj Banakar + 8
Open Access Icon Open Access
Cite IconCite
Save

Sumoylation of Cas9 at lysine 848 regulates protein stability and DNA binding.

CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme's turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.

Read full abstract
  • Journal IconLife Science Alliance
  • Publication Date IconJan 12, 2022
  • Author Icon Tunahan Ergünay + 11
Open Access Icon Open Access
Cite IconCite
Save

CRISPR/Cas9 On- and Off-Target Activity Using Correlative Force and Fluorescence Single-Molecule Microscopy.

The discovery of CRISPR/Cas9 as an easily programmable endonuclease heralds a new era of genetic manipulation. With this comes the prospect of novel gene therapy approaches, and the potential to cure previously untreatable genetic diseases. However, reports of spurious off-target editing by CRISPR/Cas9 pose a significant hurdle to realizing this potential. A deeper understanding of the factors that affect Cas9 specificity is vital for development of safe and efficient therapeutics. Here, we describe methods for the use of optical tweezers combined with confocal fluorescence microscopy and microfluidics for the analysis of on- and off-target activity of Cas9 activity.

Read full abstract
  • Journal IconMethods in molecular biology (Clifton, N.J.)
  • Publication Date IconJan 1, 2022
  • Author Icon Matthew D Newton + 3
Cite IconCite
Save

Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9.

CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat and associated Cas9 protein) is a molecular tool with transformative genome editing capabilities. At the molecular level, an intricate allosteric signaling is critical for DNA cleavage, but its role in the specificity enhancement of the Cas9 endonuclease is poorly understood. Here, multi-microsecond molecular dynamics is combined with solution NMR and graph theory-derived models to probe the allosteric role of key specificity-enhancing mutations. We show that mutations responsible for increasing the specificity of Cas9 alter the allosteric structure of the catalytic HNH domain, impacting the signal transmission from the DNA recognition region to the catalytic sites for cleavage. Specifically, the K855A mutation strongly disrupts the allosteric connectivity of the HNH domain, exerting the highest perturbation on the signaling transfer, while K810A and K848A result in more moderate effects on the allosteric communication. This differential perturbation of the allosteric signal correlates to the order of specificity enhancement (K855A > K848A ~ K810A) observed in biochemical studies, with the mutation achieving the highest specificity most strongly perturbing the signaling transfer. These findings suggest that alterations of the allosteric communication from DNA recognition to cleavage are critical to increasing the specificity of Cas9 and that allosteric hotspots can be targeted through mutational studies for improving the system's function.

Read full abstract
  • Journal IconeLife
  • Publication Date IconDec 15, 2021
  • Author Icon Kyle W East + 6
Open Access Icon Open Access
Cite IconCite
Save

Quantitative assessment of engineered Cas9 variants for target specificity enhancement by single-molecule reaction pathway analysis.

There have been many engineered Cas9 variants that were developed to minimize unintended cleavage of off-target DNAs, but detailed mechanism for the way they regulate the target specificity through DNA:RNA heteroduplexation remains poorly understood. We used single-molecule FRET assay to follow the dynamics of DNA:RNA heteroduplexation for various engineered Cas9 variants with respect to on-target and off-target DNAs. Just like wild-type Cas9, these engineered Cas9 variants exhibit a strong correlation between their conformational structure and nuclease activity. Compared with wild-type Cas9, the fraction of the cleavage-competent state dropped more rapidly with increasing base-pair mismatch, which gives rise to their enhanced target specificity. We proposed a reaction model to quantitatively analyze the degree of off-target discrimination during the successive process of R-loop expansion. We found that the critical specificity enhancement step is activated during DNA:RNA heteroduplexation for evoCas9 and HypaCas9, while it occurs in the post-heteroduplexation stage for Cas9-HF1, eCas9, and Sniper-Cas9. This study sheds new light on the conformational dynamics behind the target specificity of Cas9, which will help strengthen its rational designing principles in the future.

Read full abstract
  • Journal IconNucleic Acids Research
  • Publication Date IconSep 23, 2021
  • Author Icon So Young Bak + 6
Open Access Icon Open Access
Cite IconCite
Save

Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells

Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells

Read full abstract
  • Journal IconMolecular Cell
  • Publication Date IconSep 1, 2021
  • Author Icon Paul D Donohoue + 18
Open Access Icon Open Access
Cite IconCite
Save

  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

Popular topics

  • Latest Artificial Intelligence papers
  • Latest Nursing papers
  • Latest Psychology Research papers
  • Latest Sociology Research papers
  • Latest Business Research papers
  • Latest Marketing Research papers
  • Latest Social Research papers
  • Latest Education Research papers
  • Latest Accounting Research papers
  • Latest Mental Health papers
  • Latest Economics papers
  • Latest Education Research papers
  • Latest Climate Change Research papers
  • Latest Mathematics Research papers

Most cited papers

  • Most cited Artificial Intelligence papers
  • Most cited Nursing papers
  • Most cited Psychology Research papers
  • Most cited Sociology Research papers
  • Most cited Business Research papers
  • Most cited Marketing Research papers
  • Most cited Social Research papers
  • Most cited Education Research papers
  • Most cited Accounting Research papers
  • Most cited Mental Health papers
  • Most cited Economics papers
  • Most cited Education Research papers
  • Most cited Climate Change Research papers
  • Most cited Mathematics Research papers

Latest papers from journals

  • Scientific Reports latest papers
  • PLOS ONE latest papers
  • Journal of Clinical Oncology latest papers
  • Nature Communications latest papers
  • BMC Geriatrics latest papers
  • Science of The Total Environment latest papers
  • Medical Physics latest papers
  • Cureus latest papers
  • Cancer Research latest papers
  • Chemosphere latest papers
  • International Journal of Advanced Research in Science latest papers
  • Communication and Technology latest papers

Latest papers from institutions

  • Latest research from French National Centre for Scientific Research
  • Latest research from Chinese Academy of Sciences
  • Latest research from Harvard University
  • Latest research from University of Toronto
  • Latest research from University of Michigan
  • Latest research from University College London
  • Latest research from Stanford University
  • Latest research from The University of Tokyo
  • Latest research from Johns Hopkins University
  • Latest research from University of Washington
  • Latest research from University of Oxford
  • Latest research from University of Cambridge

Popular Collections

  • Research on Reduced Inequalities
  • Research on No Poverty
  • Research on Gender Equality
  • Research on Peace Justice & Strong Institutions
  • Research on Affordable & Clean Energy
  • Research on Quality Education
  • Research on Clean Water & Sanitation
  • Research on COVID-19
  • Research on Monkeypox
  • Research on Medical Specialties
  • Research on Climate Justice
Discovery logo
FacebookTwitterLinkedinInstagram

Download the FREE App

  • Play store Link
  • App store Link
  • Scan QR code to download FREE App

    Scan to download FREE App

  • Google PlayApp Store
FacebookTwitterTwitterInstagram
  • Universities & Institutions
  • Publishers
  • R Discovery PrimeNew
  • Ask R Discovery
  • Blog
  • Accessibility
  • Topics
  • Journals
  • Open Access Papers
  • Year-wise Publications
  • Recently published papers
  • Pre prints
  • Questions
  • FAQs
  • Contact us
Lead the way for us

Your insights are needed to transform us into a better research content provider for researchers.

Share your feedback here.

FacebookTwitterLinkedinInstagram
Cactus Communications logo

Copyright 2025 Cactus Communications. All rights reserved.

Privacy PolicyCookies PolicyTerms of UseCareers