Objective : This study aimed to investigate whether changes in carotid artery corrected flow time (ΔFTc bolus ) and carotid artery peak flow velocity respiratory variation (Δ V peak bolus ) induced by the fluid challenge could reliably predict fluid responsiveness in mechanically ventilated patients with a tidal volume < 8 mL/kg Predicted Body Weight while preserving spontaneous breathing. Methods : Carotid artery corrected flow time, Δ V peak, and hemodynamic data were measured before and after administration of 250 mL crystalloids. Fluid responsiveness was defined as a 10% or more increase in stroke volume index as assessed by noninvasive cardiac output monitoring after the fluid challenge. Results : A total of 43 patients with acute circulatory failure were enrolled in this study. Forty-three patients underwent a total of 60 fluid challenges. The ΔFTc bolus and Δ V peak bolus showed a significant difference between the fluid responsiveness positive group (n = 35) and the fluid responsiveness negative group (n = 25). Spearman correlation test showed that ΔFTc bolus and Δ V peak bolus with the relative increase in stroke volume index after fluid expansion ( r = 0.5296, P < 0.0001; r = 0.3175, P = 0.0135). Multiple logistic regression analysis demonstrated that ΔFTc bolus and Δ V peak bolus were significantly correlated with fluid responsiveness in patients with acute circulatory failure. The areas under the receiver operating characteristic curves of ΔFTc bolus and Δ V peak bolus for predicting fluid responsiveness were 0.935 and 0.750, respectively. The optimal cutoff values of ΔFTc bolus and Δ V peak bolus were 0.725 (sensitivity = 97.1%, specificity = 84%) and 4.21% (sensitivity = 65.7%, specificity = 80%), respectively. Conclusion : In mechanically ventilated patients with a tidal volume < 8 mL/kg while preserving spontaneous breathing, ΔFTc bolus and Δ V peak bolus could predict fluid responsiveness. The predictive performance of ΔFTc bolus was superior to Δ V peak bolus .
Read full abstract