The protein kinase ZAP-70 is involved in T-cell activation and interacts with tyrosine-phosphorylated peptide sequences known as immunoreceptor tyrosine activation motifs (ITAMs). We have studied the regulatory phosphorylation sites in the tryptic fragment containing amino acids 485-496 (ALGADDSYYTAR). The four possible peptides with phosphorylation at none, one, or both of the Y-492 and Y-493 tyrosines were specifically synthesized and analyzed by (1)H/(13)C-NMR at 600 MHz using a capillary HPLC-NMR microprobe. Unambiguous discrimination of the peptides was possible via effect of chemical shifts of phosphorylation on the aromatic tyrosine protons. With the microprobe and the detection volume of 1.5 microl, it was possible to perform structure elucidation with the very small amounts available for the various peptides. For the syringe injection, 15 microg of the analyte were used (corresponding to ca 2 mg in classical 5-mm tubes). Capillary HPLC-NMR spectra were recorded in the stopped-flow mode from less than 400 ng of each peptide, using 1D and 2D techniques ((1)H,(1)H-COSY-90, (1)H/(13)C-HSQC, and (1)H/(13)C-HMBC).
Read full abstract