Published in last 50 years
Related Topics
Articles published on Capacitor-coil Target
- Research Article
- 10.1088/1361-6587/adf5e7
- Aug 7, 2025
- Plasma Physics and Controlled Fusion
- Qi Zhang + 14 more
Abstract In previous studies, the pulsed strong magnetic fields generated by the laser-driven coils were usually overestimated. One of the reasons is that the self-generated magnetic field and the coil-induced magnetic field exhibit different power-law decay behaviors with respect to probe distance. We design an insulated coil target to measure the net coil-produced magnetic field, and to accurately infer the magnetic field inside a magnetized hohlraum. A magnetic field is generated by laser irradiation on a capacitor-coil target featuring an x-ray maze structure. The gold hohlraum inside the coil is slitted to eliminate the diamagnetic current and enable the external magnetic field to penetrate the gold hohlraum. To delay the closure of the slit, an x-ray maze is designed between the two capacitor plates. In this work, a pulsed magnetic field with a peak strength over 500 T is generated in the magnetized hohlraum using 1053 nm lasers with pulse length of 2 ns and energy of above 1.6 kJ. An energy conversion efficiency of ∼8% from laser energy to magnetic field energy was achieved. This work provides technical support for magnetized high-energy-density physics research.
- Research Article
- 10.3389/fphy.2024.1380844
- May 28, 2024
- Frontiers in Physics
- Chunqing Xing + 4 more
Magnetic reconnection is an important rapid energy release mechanism in astrophysics. Magnetic energy can be effectively converted into plasma kinetic energy, thermal energy, and radiation energy. This study is based on the magnetohydrodynamics simulation method and utilizes the FLASH code to investigate the laser-driven magnetic reconnection physical process of the Helmholtz capacitor-coil target. The simulation model incorporates the laser driving effect, and the external magnetic field consistent with the Helmholtz capacitor-coil target is written in. This approach achieves a magnetic reconnection process that is more consistent with the experiment. By changing the resistivity, subtle differences in energy conversion during the evolution of magnetic reconnection are observed. Under conditions of low resistivity, there is a more pronounced increase in the thermal energy of ions compared to other energy components. In simulations with high resistivity, the increase in electrons thermal energy is more prominent. The simulation gives the evolution trajectory of magnetic reconnection, which is in good agreement with the experimental results. This has important reference value for experimental research on the low-β magnetic reconnection.
- Research Article
- 10.1063/5.0149259
- Sep 13, 2023
- Matter and Radiation at Extremes
- Jiacheng Yu + 3 more
Magnetic reconnection driven by a capacitor coil target is an innovative way to investigate low-β magnetic reconnection in the laboratory, where β is the ratio of particle thermal pressure to magnetic pressure. Low-β magnetic reconnection frequently occurs in the Earth’s magnetosphere, where the plasma is characterized by β ≲ 0.01. In this paper, we analyze electron acceleration during magnetic reconnection and its effects on the electron energy spectrum via particle-in-cell simulations informed by parameters obtained from experiments. We note that magnetic reconnection starts when the current sheet is down to about three electron inertial lengths. From a quantitative comparison of the different mechanisms underlying the electron acceleration in low-β reconnection driven by coil targets, we find that the electron acceleration is dominated by the betatron mechanism, whereas the parallel electric field plays a cooling role and Fermi acceleration is negligible. The accelerated electrons produce a hardened power-law spectrum with a high-energy bump. We find that injecting electrons into the current sheet is likely to be essential for further acceleration. In addition, we perform simulations for both a double-coil co-directional magnetic field and a single-coil one to eliminate the possibility of direct acceleration of electrons beyond thermal energies by the coil current. The squeeze between the two coil currents can only accelerate electrons inefficiently before reconnection. The simulation results provide insights to guide future experimental improvements in low-β magnetic reconnection driven by capacitor coil targets.
- Research Article
2
- 10.1063/5.0120697
- Jul 1, 2023
- Physics of Plasmas
- Weiwu Wang + 17 more
A relativistic intensity laser pulse with energy from 25 to 130 J was used to produce strong magnetic fields in interactions with the designed no-hole capacitor-coil target. The magnetic field was estimated by the proton deflectometry method ignoring the potential influences of electric field. The proton deflection profiles in experiments are in good agreement with that by particle-track simulation with only the effect of coil magnetic field. The maximum magnetic field obtained in the experiment in the center of the coil is 117 ± 4 T. The experimental results with different laser energies are consistent with the previously found magnetic field production model in magnetic field amplitude and time sequence. It shows that the model has good prediction ability for magnetic field results. The results are beneficial to establish the experimental platform for generating a controllable pulsed magnetic field by relativistic intensity laser interaction. It potentially opens new frontiers in basic physics which require strong magnetic field environments.
- Research Article
1
- 10.1088/1674-1056/acb911
- Feb 4, 2023
- Chinese Physics B
- Xiaoxia Yuan + 5 more
The dynamics of low-β magnetic reconnection (MR) driven by laser interaction with a capacitor–coil target are reexamined by simulations in this paper. We compare two cases MR and non-MR (also referred as AP-case and P-case standing for the anti-parallel and parallel magnetic field lines, respectively) to distinguish the different characteristics between them. We find that only in the AP-case the reconnection electric field shows up around the X line and the electron jet is directed toward the X line. The quadruple magnetic fields exist in both cases, however, they distribute in the current sheet area in the AP-case, and out of the squeezing area in the P-case, because electrons are demagnetized in the electron diffusion region in the MR process, which is absent in the P-case. The electron acceleration is dominant by the Fermi-like mechanism before the MR process, and by the reconnection electric field when the MR occurs. A power-law electron energy spectrum with an index of 1.8 is found in the AP-case. This work proves the significant potential of this experimental platform to be applied in the studies of low-β astronomy phenomena.
- Research Article
3
- 10.1016/j.chinastron.2021.05.001
- Apr 1, 2021
- Chinese Astronomy and Astrophysics
- Xu Shan-Shan + 3 more
Numerical Simulation of Magnetic Reconnection Driven by the Laser Helmholtz Capacitor-coil Targets
- Research Article
2
- 10.1016/j.hedp.2020.100818
- May 7, 2020
- High Energy Density Physics
- Toru Sasaki + 5 more
A numerical study on the pulse duration dependence of a magnetic field generated using a laser-driven capacitor-coil target
- Research Article
3
- 10.7498/aps.69.20200215
- Jan 1, 2020
- Acta Physica Sinica
- Bo Han + 1 more
Proton radiography is a widely used method to diagnose the electromagnetic field of plasma. When protons pass through the electromagnetic field of plasma, they are deflected by Lorentz force and redistributed on the recorder. How to reconstruct electromagnetic field from the experimental result is an open problem. In this paper, we take the laser-driven capacitor-coil target for example to introduce and compare particle tracing and flux analysis, which are two widely used methods in proton radiography experiment to reconstruct the magnetic field. The capacitor-coil target is an important method to generate strong magnetic field in laser plasma experiment, where the strong current flows in the coil and its producing magnetic field may be larger than kilotesla. Firstly, the theoretical magnetic fields of capacitor-coil target are calculated with current being 10 kA and 50 kA. Secondly, the Geant4 is used to simulate the proton radiographs, where protons with 7.5 MeV pass through the target and the theoretical magnetic field is recorded. Thirdly, the theoretical proton radiographs are analyzed by the flux analysis method, and two magnetic fields are reconstructed. Finally, the theoretical magnetic fields are compared with the reconstructed ones, and the advantages and disadvantages of these two methods are analyzed. Particle tracing rebuilds the geometry distribution of proton source, plasma magnetic field and recorder in experiment, and it needs few assumptions. However, it strongly relies on accurate calculation of theoretical magnetic field and proton trajectory, and it requires to change the magnetic field over and over to achieve a closest result to the experimental proton radiograph. Meanwhile, particle tracing method consumes a lot of computation sources. The flux analysis directly reconstructs the magnetic field from experimental proton radiograph. However, it is only applicable to the case of weak magnetic field, and the error becomes larger for the case of stronger magnetic field. A dimensionless parameter <i>μ</i> is used to estimate the deflection of proton in the magnetic field, which measures the amount of deflection per unit length in the interaction region. The flux analysis method is applicable to the <inline-formula><tex-math id="M601">\begin{document}$\mu\ll 1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20200215_M601.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20200215_M601.png"/></alternatives></inline-formula> regime. Additionally, the target may absorb the proton when the energy of proton is low and produces shadow on the proton radiograph, which leads to some difference between the original magnetic field and the reconstructed result.
- Research Article
13
- 10.1017/hpl.2020.9
- Jan 1, 2020
- High Power Laser Science and Engineering
- P Bradford + 18 more
A developing application of laser-driven currents is the generation of magnetic fields of picosecond–nanosecond duration with magnitudes exceeding $B=10~\text{T}$ . Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform, quasi-static magnetic fields on the millimetre scale. Here, we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter. Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target. Using this dual-axis platform for proton deflectometry, robust measurements can be made of the evolution of magnetic fields in a capacitor coil target.
- Research Article
4
- 10.1364/oe.27.029676
- Oct 1, 2019
- Optics Express
- Jun-Hao Tan + 8 more
Laser wakefield accelerators have emerged as a promising candidate for compact synchrotron radiation and even x-ray free electron lasers. Today, to make the electrons emit electromagnetic radiation, the trajectories of laser wakefield accelerated electrons are deflected by transverse wakefield, counter-propagating laser field or external permanent magnet insertion device. Here, we propose a novel type of undulator that has a period of a few hundred microns and a magnetic field of tens of Tesla. The undulator consists of a bifilar capacitor-coil target that sustains a strong discharge current that generates a helical magnetic field around the coil axis when irradiated by a high-energy laser. Coupling this undulator with state-of-the-art laser wakefield accelerators can, simultaneously, produce ultra-bright quasi-monochromatic x-rays with tunable energy ranging 5-250 keV and optimize the free electron laser parameter and gain length compared with a permanent magnet-based undulator. This concept may pave a path toward ultra-compact synchrotron radiation and even x-ray free electron lasers.
- Research Article
16
- 10.1063/1.5000991
- Aug 1, 2018
- Physics of Plasmas
- Weiwu Wang + 34 more
An ultraintense femtosecond laser pulse was used, for the first time, to produce a strong magnetic field with controlled shapes by interactions with a capacitor-coil target with high efficiency. The temporal evolution of the strong magnetic field was obtained by the time-gated proton radiography method. A comparison of high-resolution radiographic images of proton deflection and particle-track simulations indicates a peak magnetic field of ∼20 T. The energy conversion efficiency from the ultraintense laser pulse to the magnetic field is as high as ∼10%. A simple model of the ultraintense laser-driven capacitor-coil target gives a relationship between the magnetic field strength and the electron temperature produced by the laser. Our results indicate that magnetic fields of tens of tesla could be stably produced by most of the existing ultraintense laser facilities. It potentially opens new frontiers in basic physics which require strong magnetic field environments.
- Research Article
7
- 10.1063/1.5021147
- May 1, 2018
- Physics of Plasmas
- Kai Huang + 5 more
In this paper, we propose an experimental scheme to fulfill magnetically driven reconnections. Here, two laser beams are focused on a capacitor-coil target and then strong currents are wired in two parallel circular coils. Magnetic reconnection occurs between the two magnetic bubbles created by the currents in the two parallel circular coils. A two-dimensional particle-in-cell simulation model in the cylindrical coordinate is used to investigate such a process, and the simulations are performed in the (r,z) plane. The results show that with the increase of the currents in the two coils, the associated magnetic bubbles expand and a current sheet is formed between the two bubbles. Magnetic reconnection occurs when the current sheet is sufficiently thin. A quadrupole structure of the magnetic field in the θ direction (Bθ) is generated in the diffusion region and a strong electron current along the r direction (Jer) is also formed due to the existence of the high-speed electron flow away from the X line in the center of the outflow region. Because the X line is a circle along the θ direction, the convergence of the plasma flow around r=0 will lead to the asymmetry of Jer and Bθ between the two outflow regions of magnetic reconnection.
- Research Article
21
- 10.1017/hpl.2018.33
- Jan 1, 2018
- High Power Laser Science and Engineering
- Zhe Zhang + 16 more
As a promising new way to generate a controllable strong magnetic field, laser-driven magnetic coils have attracted interest in many research fields. In 2013, a kilotesla level magnetic field was achieved at the Gekko XII laser facility with a capacitor–coil target. A similar approach has been adopted in a number of laboratories, with a variety of targets of different shapes. The peak strength of the magnetic field varies from a few tesla to kilotesla, with different spatio-temporal ranges. The differences are determined by the target geometry and the parameters of the incident laser. Here we present a review of the results of recent experimental studies of laser-driven magnetic field generation, as well as a discussion of the diagnostic techniques required for such rapidly changing magnetic fields. As an extension of the magnetic field generation, some applications are discussed.
- Research Article
1
- 10.1088/1742-6596/717/1/012078
- May 1, 2016
- Journal of Physics: Conference Series
- T Sasaki + 8 more
To understand its magnetohydrodynamic behaviors and the electrical properties, we proposed to evaluate both experimental observations and numerical simulations. Electrical conductivity for nickel in warm dense matter (WDM) state has been measured with an exploding wire in a quasi-isochoric vessel. The result shows that the electrical conductivity for nickel in WDM is relatively high from the comparison of the electrical conductivities for several materials in WDM state. However, the skin effect in the capacitor-coil target will be neglected from the estimation. A two-dimensional magnetohydrodynamic simulation for the capacitor-coil target has been demonstrated. The results shows that the distribution of B-field in the capacitor-coil target depends on the electrical conductivity model.
- Research Article
62
- 10.1063/1.4948278
- May 1, 2016
- Physics of Plasmas
- Shinsuke Fujioka + 39 more
A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma from entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser–plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to &gt;109. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused by imploding plasma. Following the above improvements, conversion of 13% of the LFEX laser energy to a low energy portion of the REB, whose slope temperature is 0.7 MeV, which is close to the ponderomotive scaling value, was achieved. To meet the second requirement, the compression of a solid spherical ball with a diameter of 200-μm to form a dense core with an areal density of ∼0.07 g/cm2 was induced by a laser-driven spherically converging shock wave. Converging shock compression is more hydrodynamically stable compared to shell implosion, while a hot spot cannot be generated with a solid ball target. Solid ball compression is preferable also for compressing an external magnetic field to collimate the REB to the fuel core, due to the relatively small magnetic Reynolds number of the shock compressed region. To meet the third requirement, we have generated a strong kilo-tesla magnetic field using a laser-driven capacitor-coil target. The strength and time history of the magnetic field were characterized with proton deflectometry and a B-dot probe. Guidance of the REB using a 0.6-kT field in a planar geometry has been demonstrated at the LULI 2000 laser facility. In a realistic FI scenario, a magnetic mirror is formed between the REB generation point and the fuel core. The effects of the strong magnetic field on not only REB transport but also plasma compression were studied using numerical simulations. According to the transport calculations, the heating efficiency can be improved from 0.4% to 4% by the GEKKO and LFEX laser system by meeting the three requirements described above. This efficiency is scalable to 10% of the heating efficiency by increasing the areal density of the fuel core.
- Research Article
46
- 10.1063/1.4944928
- Mar 1, 2016
- Physics of Plasmas
- X X Pei + 15 more
We demonstrate a novel plasma device for magnetic reconnection, driven by Gekko XII lasers irradiating a double-turn Helmholtz capacitor-coil target. Optical probing revealed an accumulated plasma plume near the magnetic reconnection outflow. The background electron density and magnetic field were measured to be approximately 1018 cm−3 and 60 T by using Nomarski interferometry and the Faraday effect, respectively. In contrast with experiments on magnetic reconnection constructed by the Biermann battery effect, which produced high beta values, our beta value was much lower than one, which greatly extends the parameter regime of laser-driven magnetic reconnection and reveals its potential in astrophysical plasma applications.
- Research Article
99
- 10.1063/1.4943078
- Feb 29, 2016
- Applied Physics Letters
- K F F Law + 15 more
A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.
- Research Article
39
- 10.1063/1.4939119
- Dec 28, 2015
- Applied Physics Letters
- B J Zhu + 29 more
A simple scheme to produce strong magnetic fields due to cold electron flow in an open-ended coil heated by high power laser pulses is proposed. It differs from previous generation of magnetic fields driven by fast electron current in a capacitor-coil target [S. Fujioka et al., Sci. Rep. 3, 1170 (2013)]. The fields in our experiments are measured by B-dot detectors and proton radiography, respectively. A 205 T strong magnetic field at the center of the coil target is generated in the free space at Iλ2 of 6.85 × 1014 W cm−2 μm2, where I is the laser intensity, and λ is the laser wavelength. The magnetic field strength is proportional to Iλ2. Compared with the capacitor-coil target, the generation mechanism of the magnetic field is straightforward and the coil is easy to be fabricated.
- Research Article
283
- 10.1038/srep01170
- Jan 30, 2013
- Scientific Reports
- Shinsuke Fujioka + 12 more
Laboratory generation of strong magnetic fields opens new frontiers in plasma and beam physics, astro- and solar-physics, materials science, and atomic and molecular physics. Although kilotesla magnetic fields have already been produced by magnetic flux compression using an imploding metal tube or plasma shell, accessibility at multiple points and better controlled shapes of the field are desirable. Here we have generated kilotesla magnetic fields using a capacitor-coil target, in which two nickel disks are connected by a U-turn coil. A magnetic flux density of 1.5 kT was measured using the Faraday effect 650 μm away from the coil, when the capacitor was driven by two beams from the GEKKO-XII laser (at 1 kJ (total), 1.3 ns, 0.53 or 1 μm, and 5 × 1016 W/cm2).
- Research Article
41
- 10.1088/0741-3335/54/12/124042
- Nov 21, 2012
- Plasma Physics and Controlled Fusion
- Shinsuke Fujioka + 19 more
The world's largest peta watt (PW) laser LFEX, which delivers energy up to 2 kJ in a 1.5 ps pulse, has been constructed beside the GEKKO XII laser at the Institute of Laser Engineering, Osaka University. The GEKKO-LFEX laser facility enables the creation of materials having high-energy-density which do not exist naturally on the Earth and have an energy density comparable to that of stars. High-energy-density plasma is a source of safe, secure, environmentally sustainable fusion energy. Direct-drive fast-ignition laser fusion has been intensively studied at this facility under the auspices of the Fast Ignition Realization Experiment (FIREX) project.In this paper, we describe improvement of the LFEX laser and investigations of advanced target design to increase the energy coupling efficiency of the fast-ignition scheme. The pedestal of the LFEX pulse, which produces a long preformed plasma and results in the generation of electrons too energetic to heat the fuel core, was reduced by introducing an amplified optical parametric fluorescence quencher and saturable absorbers in the front-end system of the LFEX laser. Since fast electrons are scattered and stopped by the strong electric field of highly ionized high-Z (i.e. gold) ions, a low-Z cone was studied for reducing the energy loss of fast electrons in the cone tip region. A diamond-like carbon cone was fabricated for the fast-ignition experiment. An external magnetic field, which is demonstrated to be generated by a laser-driven capacitor-coil target, will be applied to the compression of the fuel capsule to form a strong magnetic field to guide the fast electrons to the fuel core. In addition, the facility offers a powerful means to test and validate astronomical models and computations in the laboratory. As well as demonstrating the ability to recreate extreme astronomical conditions by the facilities, our theoretical description of the laboratory experiment was compared with the generally accepted explanation for astronomical observations.