Well-targeted balance, walking, and weight-shift training can improve balance capabilities in the chronic phase of stroke. There is an urgent need for a long-term approach to rehabilitation that extends beyond the acute and subacute phases, supporting participation without increasing the demand for health care staff. This study aims to evaluate the effectiveness of therapeutic exercise interventions with virtual reality (VR) training on balance and walking at the activity and participation levels in individuals with chronic stroke, compared with control groups receiving no treatment, conventional physical therapy, specific training, similar treatment, or identical treatment without VR. Studies were searched across 6 databases. The inclusion criteria were as follows: Adults aged 18 years or older with a stroke diagnosis for at least 6 months (population). Therapeutic exercises within a VR environment, using VR glasses or interactive games (intervention). Control groups without the use of VR (including no treatment, conventional physical therapy, specific training, similar treatment without VR, or identical treatment without the additional use of VR; comparison). We evaluated the Berg Balance Scale score, Functional Reach Test performance, Activities-specific Balance Confidence Scale score, Six-minute Walk Test, Two-minute Walk Test, 10-meter Walk Test results, and cadence (outcome measures). We investigated randomized controlled trials (study design). A meta-analysis and a meta-regression analysis were conducted to evaluate whether the content of VR interventions or control groups, as well as the level of VR immersion used, was related to balance or walking outcomes. A total of 43 randomized controlled trials involving 1136 participants were included in this review. The use of VR training in therapeutic exercise interventions had a large effect on balance (standardized mean difference 0.51, 95% CI 0.29-0.72; P<.001) and a moderate effect on walking (standardized mean difference 0.31, 95% CI 0.09-0.53; P=.006) in individuals with chronic stroke, compared with pooled control groups (no treatment, conventional physical therapy, specific training, similar treatment, or identical treatment without the use of VR). According to the meta-regression findings, the content of VR interventions (P=.52), the type of control groups (P=.79), and the level of VR immersion (P=.82) were not significantly related to the pooled balance or walking outcomes. The GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) was moderate for balance and low for walking. Therapeutic exercise training with VR had a positive, albeit moderate, effect on balance and a low impact on walking at the level of activity (capacity), even in the chronic phase of stroke, without serious side effects. The results are applicable to working-aged stroke rehabilitees who are able to walk without assistance. Further research is needed with defined VR methods and outcomes that assess performance at the level of real-life participation.
Read full abstract