Zinc dialkyl dithiophosphate (ZDDP) is an anti-wear additive for steel surfaces currently used in engine oils. Its anti-wear performance (against abrasion) is due to tribochemical reaction of zinc polyphosphate with abrasive metal oxides nanoparticles, under the combined effect of pressure and shear. However, phosphorous and sulfur are nocuous for environmental issues. Borates are possible candidates to replace phosphates in engine oils. Friction reduction with borates is found to be better than ZDDP but the anti-wear efficiency of borates is lower. In this work, we show how chemical hardness model and computer simulation can explain these different behaviors. Also we show that molecular dynamics is able to predict accurately behavior of mixtures of phosphates and borate. Results show that mixtures of additives with a P:B ratio slightly above unity can be a good compromise to have both good tribological performance and low content of phosphorous and sulfur in the lubricant.
Read full abstract