The use of all-solid waste cementitious materials (ACM) in coal mine grouting backfill offers substantial green, low-carbon, and energy-saving benefits. This study systematically examines the effects of combining carbide slag (CS), fly ash (FA), and ground granulated blast furnace slag (GGBS) on the strength, workability, hydration characteristics, and microstructure of ACM. The utilization of sulfur-containing CS was achieved. The detrimental effects of delayed FA reaction and prolonged setting time can be mitigated by the introduction of high alkalinity or an increase in the Ca/Si ratio. The compressive strength may also be enhanced. The addition of excessive alkalinity (10 %) will result in a prolongation of the setting time. The primary hydration products include calcium aluminum silicate hydrate and magnesium-aluminum layered double hydroxide. Low Ca/Si ratios favor alkali metal ion charge balance, facilitating the transformation of silicate gels from single to double chains, while excessively high ratios reduce polymerization. Gmelinite forms when the (Ca+Na)/(Al+Si) ratio exceeds 1.6, and high NaOH concentrations inhibit ettringite formation. Validation shows that a GGBS:FA:CS= 3:1:3 mix with 4 % alkali binder (Group A2) meets mine grouting backfill criteria, with 80 % lower carbon emissions, 68 % lower energy intensity, and 50 % lower cost than cement. This research offers a viable pathway for the comprehensive utilization of multi-solid waste in mining applications.
Read full abstract