Transcatheter arterial embolization is a minimally invasive intervention process in which the blood supply to a tumor or an abnormal area of tissue is blocked. One of the most commonly used embolic agents in clinics is microsphere (MS). In order to understand the flow behavior of microspheres in arteries, it is essential to study their mechanical properties systematically. In this work, calcium-alginate MSs with varying calcium concentrations were synthesized using a coaxial airflow method. Indocyanine green (ICG) was added as a fluorescent dye. The effect of ICG concentration change on microspheres was investigated by studying morphology, imageability, rheology, and swelling behavior. Then the effect of calcium chloride concentration change on microspheres was studied by conducting rheological tests, atomic force microscopy tests, hemolysis assay, and thrombogenicity assay. Results showed that microspheres with higher ICG concentrations have longer lasting fluorescence and lower storage modulus (G′). Higher concentrations of calcium chloride led to higher G′, while the local Young's modulus obtained by AFM test was not significantly affected. The MSs with and without ICG showed good hemocompatibility and thrombogenicity.
Read full abstract