The expanding capabilities of surgical systems bring with them increasing complexity in the interfaces that humans use to control them. Robotic C-arm X-ray imaging systems, for instance, often require manipulation of independent axes via joysticks, while higher-level control options hide inside device-specific menus. The complexity of these interfaces hinder "ready-to-hand" use of high-level functions. Natural language offers a flexible, familiar interface for surgeons to express their desired outcome rather than remembering the steps necessary to achieve it, enabling direct access to task-aware, patient-specific C-arm functionality. We present an English language voice interface for controlling a robotic X-ray imaging system with task-aware functions for pelvic trauma surgery. Our fully integrated system uses a large language model (LLM) to convert natural spoken commands into machine-readable instructions, enabling low-level commands like "Tilt back a bit," to increase the angular tilt or patient-specific directions like, "Go to the obturator oblique view of the right ramus," based on automated image analysis. We evaluate our system with 212 prompts provided by an attending physician, in which the system performed satisfactory actions 97% of the time. To test the fully integrated system, we conduct a real-time study in which an attending physician placed orthopedic hardware along desired trajectories through an anthropomorphic phantom, interacting solely with an X-ray system via voice. Voice interfaces offer a convenient, flexible way for surgeons to manipulate C-arms based on desired outcomes rather than device-specific processes. As LLMs grow increasingly capable, so too will their applications in supporting higher-level interactions with surgical assistance systems.
Read full abstract