The problem of network function computation over a directed acyclic network is investigated in this paper. In such a network, a sink node desires to compute with zero error a target function , of which the inputs are generated at multiple source nodes. The edges in the network are assumed to be error-free and have limited capacity. The nodes in the network are assumed to have unbounded computing capability and be able to perform network coding. The computing rate of a network code that can compute the target function over the network is the average number of times that the target function is computed with zero error for one use of the network. In this paper, we obtain an improved upper bound on the computing capacity, which is applicable to arbitrary target functions and arbitrary network topologies. This improved upper bound not only is an enhancement of the previous upper bounds but also is the first tight upper bound on the computing capacity for computing an arithmetic sum over a certain non-tree network, which has been widely studied in the literature. We also introduce a multi-dimensional array approach that facilitates evaluation of the improved upper bound. Furthermore, we apply this bound to the problem of computing a vector-linear function over a network. With this bound, we are not only able to enhance a previous result on computing a vector-linear function over a network but also simplify the proof significantly. Finally, we prove that for computing the binary maximum function over the reverse butterfly network, our improved upper bound is not achievable. This result establishes that in general our improved upper bound is non-achievable, but whether it is asymptotically achievable or not remains open.
Read full abstract