In the realm of Sm2Co17 nanocomposite magnetic materials, it remains a challenge to fabricate anisotropic magnets by forming nanocrystalline Sm2Co17 phases with strong texture, alongside soft phases of small size and high soft phase content. In this paper, we present a novel approach for fabricating anisotropic Sm2Co17/Fe(Co) nanocomposite bulk magnets with a prominent (00 l) texture of the Sm2Co17 phase, the 25 wt% content of the Fe(Co) phase, and a refined grain size of 25 nm. This fabrication is achieved using a two-step high-pressure thermal compression (HPTC) deformation process. The fabricated magnets exhibit a maximum energy product [(BH)max] of 20.0 MGOe with a pronounced magnetic anisotropy (Br///Br⊥ = 1.23). This result is 53 % higher than the previously reported largest value [(BH)max = 13.1 MGOe] for Sm2Co17-based nanocomposites. The magnets also exhibit a low remanence temperature coefficient (α = −0.014 %/°C) and a low coercivity temperature coefficient (β = −0.23 %/°C), demonstrating exceptional thermal stability. Our findings may improve the fabrication of anisotropic bulk Sm2Co17 nanostructure magnets for practical applications.
Read full abstract