Mechanical properties are some of the most important parameters for understanding well drilling and hydraulic fracturing designs in unconventional reservoir development. As an effective tool, nanoindentation has been used to determine the mechanical properties of rocks at the nanoscale. In this study, the Longmaxi Formation shale samples from the Yibin area of China were collected and analyzed to obtain the multiphase mechanical properties. The mineral compositions and organic geochemistry of the shale samples were studied using X-ray diffraction, energy-dispersive X-ray spectrometry, and a carbon/sulfur analyzer. The pore structures of the shale samples at the micro- and nanoscales were characterized by field-emission scanning electron microscopy. The mechanical parameters of the shale samples, such as the hardness and elastic modulus, were investigated using the nanoindentation method to identify three mineral phases: brittle minerals, soft matters, and complex minerals at the interfaces between brittle minerals and soft matters. The uncertainty characteristics of the mechanical parameters of the three mineral phases were evaluated using the Weibull model, and the factors interfering with the mechanical parameters were analyzed for the different shale samples. The results showed that the brittle minerals had the largest recovered elastic deformations and the smallest residual deformations, while the soft matters had the largest residual deformations and the smallest recovered elastic deformations. The analysis results of the coefficients of variation and the Weibull modulus both confirmed that the scatter of the hardness was higher than that of the elastic modulus because of the uncertain contact area, and the hardness and elastic modulus of the soft matters had the highest uncertainty among the three mineral phases. The elastic modulus increased nonlinearly with increasing hardness according to a power function for the whole shale sample. The elastic modulus and hardness both had a favorable linear relationship with the total organic carbon (TOC) content, illustrating that the TOC content was one of the significant factors that affected the mechanical parameters of the shale samples.
Read full abstract