Knowledge of bubble and drop size distributions in two-phase flows is important for characterizing a wide range of phenomena, including combustor ignition, sonar communication, and cloud formation. The physical mechanisms driving the background flow also drive the time evolution of these distributions. Accurate and robust identification and tracking algorithms for the dispersed phase are necessary to reliably measure this evolution and thereby quantify the underlying mechanisms in interface-resolving flow simulations. The identification of individual bubbles and drops traditionally relies on an algorithm used to identify connected regions. This traditional algorithm can be sensitive to the presence of spurious structures. A cost-effective refinement is proposed to maximize volume accuracy while minimizing the identification of spurious bubbles and drops. An accurate identification scheme is crucial for distinguishing bubble and drop pairs with large size ratios. The identified bubbles and drops need to be tracked in time to obtain breakup and coalescence statistics that characterize the evolution of the size distribution, including breakup and coalescence frequencies, and the probability distributions of parent and child bubble and drop sizes. An algorithm based on mass conservation is proposed to construct bubble and drop lineages using simulation snapshots that are not necessarily from consecutive time steps. These lineages are then used to detect breakup and coalescence events, and obtain the desired statistics. Accurate identification of large-size-ratio bubble and drop pairs enables accurate detection of breakup and coalescence events over a large size range. Accurate detection of successive breakup and coalescence events requires that the snapshot interval be an order of magnitude smaller than the characteristic breakup and coalescence times to capture these successive events while minimizing the identification of repeated confounding events. Together, these algorithms serve as a toolbox for detailed analysis of two-phase simulations, and enable insights into the mechanisms behind bubble and drop formation and evolution in flows of practical importance.
Read full abstract