A stochastic reaction–diffusion drift model is used to simulate the time kinetics of interface and bulk oxide traps responsible for bias temperature instability (BTI), stress-induced leakage current (SILC), and time-dependent dielectric breakdown (TDDB) in MOSFETs. Trap generation and passivation are calculated using dissociation and repassivation of trap precursors and simultaneous diffusion and/or drift of atomic, molecular, and/or ionic species. The average of multiple stochastic simulations is used to qualitatively explain the measured BTI and SILC data. The difference in BTI and SILC time kinetics, variation in SILC time kinetics across reports, and oxide thickness dependence of TDDB Weibull slope variation are also qualitatively explained.
Read full abstract