Traumatic brain injury (TBI) presents substantial clinical challenges, as existing treatments are unable to reverse damage or effectively promote brain tissue regeneration. Although implantable biomaterials have been proposed to support tissue repair by mitigating the adverse microenvironment in injured brains, many fail to replicate the complex composition and architecture of the native extracellular matrix (ECM), resulting in only limited therapeutic outcomes. This study introduces an innovative approach by developing a mesenchymal stem cell (MSC) spheroid-derived three-dimensional (3D) decellularized ECM (dECM) that is enriched with the MSC-derived matrisome and secretome, offering a promising solution for TBI treatment and brain tissue regeneration. Proteomic and cytokine array analyses revealed that 3D dECM retained a diverse array of MSC spheroid-derived matrisome proteins and secretome components, which are crucial for replicating the complexity of native ECM and the therapeutic capabilities of MSCs. These molecules were found to underlie the observed effects of 3D dECM on immunomodulation, proneuritogenesis, and proangiogenesis in our in vitro functional assays. Implantation of 3D dECM into TBI model mice effectively mitigated postinjury tissue damage and promoted brain repair, as evidenced by a reduced brain lesion volume, decreased cell apoptosis, alleviated neuroinflammation, reduced glial scar formation, and increased of neuroblast recruitment to the lesion site. These outcomes culminated in improved motor function recovery in animals, highlighting the multifaceted therapeutic potential of 3D dECM for TBI. In summary, our study elucidates the transformative potential of MSC spheroid-derived bioactive 3D dECM as an implantable biomaterial for effectively mitigating post-TBI neurological damage, paving the way for its broader therapeutic application.
Read full abstract