In food processing, foreign matter inevitably contaminates packaged food. To ensure food safety, ray-based detection is used; however, the original images suffer from aberrations and noise that degrade quality and hinder further processing. Thus, images are preprocessed to enhance quality by highlighting key features and suppressing irrelevant ones before abnormal pattern recognition. Following image segmentation, a BP neural network algorithm is applied for foreign object detection. In tests with contaminants such as metal wires, stones, and glass, the algorithm identified distinct abnormal fluctuations at gray levels of 132, 108, and 34, respectively, allowing it to reliably detect foreign objects. Although the practical detection rate reached 100%, occasional misjudgments suggest that further optimization is needed. Overall, this method introduces a novel approach to detecting foreign objects in food and offers promising new strategies for improving food safety monitoring.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
725 Articles
Published in last 50 years
Articles published on BP Neural Network Algorithm
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
722 Search results
Sort by Recency